cpqphp_ctrl.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:79k
- /*
- * Compaq Hot Plug Controller Driver
- *
- * Copyright (c) 1995,2001 Compaq Computer Corporation
- * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
- * Copyright (c) 2001 IBM Corp.
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * Send feedback to <greg@kroah.com>
- *
- */
- #include <linux/config.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include <linux/slab.h>
- #include <linux/interrupt.h>
- #include <linux/delay.h>
- #include <linux/wait.h>
- #include <linux/smp_lock.h>
- #include <linux/pci.h>
- #include "cpqphp.h"
- static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,u8 behind_bridge, struct resource_lists *resources);
- static int configure_new_function(struct controller* ctrl, struct pci_func *func,u8 behind_bridge, struct resource_lists *resources);
- static void interrupt_event_handler(struct controller *ctrl);
- static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
- static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
- static int event_finished;
- static unsigned long pushbutton_pending; /* = 0 */
- /* things needed for the long_delay function */
- static struct semaphore delay_sem;
- static wait_queue_head_t delay_wait;
- /* delay is in jiffies to wait for */
- static void long_delay (int delay)
- {
- DECLARE_WAITQUEUE(wait, current);
-
- /* only allow 1 customer into the delay queue at once
- * yes this makes some people wait even longer, but who really cares?
- * this is for _huge_ delays to make the hardware happy as the
- * signals bounce around
- */
- down (&delay_sem);
- init_waitqueue_head (&delay_wait);
- add_wait_queue(&delay_wait, &wait);
- set_current_state(TASK_INTERRUPTIBLE);
- schedule_timeout(delay);
- remove_wait_queue(&delay_wait, &wait);
- set_current_state(TASK_RUNNING);
-
- up (&delay_sem);
- }
- //FIXME: The following line needs to be somewhere else...
- #define WRONG_BUS_FREQUENCY 0x07
- static u8 handle_switch_change(u8 change, struct controller * ctrl)
- {
- int hp_slot;
- u8 rc = 0;
- u16 temp_word;
- struct pci_func *func;
- struct event_info *taskInfo;
- if (!change)
- return 0;
- // Switch Change
- dbg("cpqsbd: Switch interrupt received.n");
- for (hp_slot = 0; hp_slot < 6; hp_slot++) {
- if (change & (0x1L << hp_slot)) {
- //*********************************
- // this one changed.
- //*********************************
- func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
- //this is the structure that tells the worker thread
- //what to do
- taskInfo = &(ctrl->event_queue[ctrl->next_event]);
- ctrl->next_event = (ctrl->next_event + 1) % 10;
- taskInfo->hp_slot = hp_slot;
- rc++;
- temp_word = ctrl->ctrl_int_comp >> 16;
- func->presence_save = (temp_word >> hp_slot) & 0x01;
- func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
- if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
- //*********************************
- // Switch opened
- //*********************************
- func->switch_save = 0;
- taskInfo->event_type = INT_SWITCH_OPEN;
- } else {
- //*********************************
- // Switch closed
- //*********************************
- func->switch_save = 0x10;
- taskInfo->event_type = INT_SWITCH_CLOSE;
- }
- }
- }
- return rc;
- }
- /*
- * find_slot
- */
- static inline struct slot *find_slot (struct controller * ctrl, u8 device)
- {
- struct slot *slot;
- if (!ctrl)
- return NULL;
- slot = ctrl->slot;
- while (slot && (slot->device != device)) {
- slot = slot->next;
- }
- return slot;
- }
- static u8 handle_presence_change(u16 change, struct controller * ctrl)
- {
- int hp_slot;
- u8 rc = 0;
- u8 temp_byte;
- u16 temp_word;
- struct pci_func *func;
- struct event_info *taskInfo;
- struct slot *p_slot;
- if (!change)
- return 0;
- //*********************************
- // Presence Change
- //*********************************
- dbg("cpqsbd: Presence/Notify input change.n");
- dbg(" Changed bits are 0x%4.4xn", change );
- for (hp_slot = 0; hp_slot < 6; hp_slot++) {
- if (change & (0x0101 << hp_slot)) {
- //*********************************
- // this one changed.
- //*********************************
- func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
- taskInfo = &(ctrl->event_queue[ctrl->next_event]);
- ctrl->next_event = (ctrl->next_event + 1) % 10;
- taskInfo->hp_slot = hp_slot;
- rc++;
- p_slot = find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
- // If the switch closed, must be a button
- // If not in button mode, nevermind
- if (func->switch_save && (ctrl->push_button == 1)) {
- temp_word = ctrl->ctrl_int_comp >> 16;
- temp_byte = (temp_word >> hp_slot) & 0x01;
- temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
- if (temp_byte != func->presence_save) {
- //*********************************
- // button Pressed (doesn't do anything)
- //*********************************
- dbg("hp_slot %d button pressedn", hp_slot);
- taskInfo->event_type = INT_BUTTON_PRESS;
- } else {
- //*********************************
- // button Released - TAKE ACTION!!!!
- //*********************************
- dbg("hp_slot %d button releasedn", hp_slot);
- taskInfo->event_type = INT_BUTTON_RELEASE;
- // Cancel if we are still blinking
- if ((p_slot->state == BLINKINGON_STATE)
- || (p_slot->state == BLINKINGOFF_STATE)) {
- taskInfo->event_type = INT_BUTTON_CANCEL;
- dbg("hp_slot %d button canceln", hp_slot);
- } else if ((p_slot->state == POWERON_STATE)
- || (p_slot->state == POWEROFF_STATE)) {
- //info(msg_button_ignore, p_slot->number);
- taskInfo->event_type = INT_BUTTON_IGNORE;
- dbg("hp_slot %d button ignoren", hp_slot);
- }
- }
- } else {
- // Switch is open, assume a presence change
- // Save the presence state
- temp_word = ctrl->ctrl_int_comp >> 16;
- func->presence_save = (temp_word >> hp_slot) & 0x01;
- func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
- if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
- (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
- //*********************************
- // Present
- //*********************************
- taskInfo->event_type = INT_PRESENCE_ON;
- } else {
- //*********************************
- // Not Present
- //*********************************
- taskInfo->event_type = INT_PRESENCE_OFF;
- }
- }
- }
- }
- return rc;
- }
- static u8 handle_power_fault(u8 change, struct controller * ctrl)
- {
- int hp_slot;
- u8 rc = 0;
- struct pci_func *func;
- struct event_info *taskInfo;
- if (!change)
- return 0;
- //*********************************
- // power fault
- //*********************************
- info("power fault interruptn");
- for (hp_slot = 0; hp_slot < 6; hp_slot++) {
- if (change & (0x01 << hp_slot)) {
- //*********************************
- // this one changed.
- //*********************************
- func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
- taskInfo = &(ctrl->event_queue[ctrl->next_event]);
- ctrl->next_event = (ctrl->next_event + 1) % 10;
- taskInfo->hp_slot = hp_slot;
- rc++;
- if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
- //*********************************
- // power fault Cleared
- //*********************************
- func->status = 0x00;
- taskInfo->event_type = INT_POWER_FAULT_CLEAR;
- } else {
- //*********************************
- // power fault
- //*********************************
- taskInfo->event_type = INT_POWER_FAULT;
- if (ctrl->rev < 4) {
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
- set_SOGO (ctrl);
- // this is a fatal condition, we want to crash the
- // machine to protect from data corruption
- // simulated_NMI shouldn't ever return
- //FIXME
- //simulated_NMI(hp_slot, ctrl);
- //The following code causes a software crash just in
- //case simulated_NMI did return
- //FIXME
- //panic(msg_power_fault);
- } else {
- // set power fault status for this board
- func->status = 0xFF;
- info("power fault bit %x setn", hp_slot);
- }
- }
- }
- }
- return rc;
- }
- /*
- * sort_by_size
- *
- * Sorts nodes on the list by their length.
- * Smallest first.
- *
- */
- static int sort_by_size(struct pci_resource **head)
- {
- struct pci_resource *current_res;
- struct pci_resource *next_res;
- int out_of_order = 1;
- if (!(*head))
- return(1);
- if (!((*head)->next))
- return(0);
- while (out_of_order) {
- out_of_order = 0;
- // Special case for swapping list head
- if (((*head)->next) &&
- ((*head)->length > (*head)->next->length)) {
- out_of_order++;
- current_res = *head;
- *head = (*head)->next;
- current_res->next = (*head)->next;
- (*head)->next = current_res;
- }
- current_res = *head;
- while (current_res->next && current_res->next->next) {
- if (current_res->next->length > current_res->next->next->length) {
- out_of_order++;
- next_res = current_res->next;
- current_res->next = current_res->next->next;
- current_res = current_res->next;
- next_res->next = current_res->next;
- current_res->next = next_res;
- } else
- current_res = current_res->next;
- }
- } // End of out_of_order loop
- return(0);
- }
- /*
- * sort_by_max_size
- *
- * Sorts nodes on the list by their length.
- * Largest first.
- *
- */
- static int sort_by_max_size(struct pci_resource **head)
- {
- struct pci_resource *current_res;
- struct pci_resource *next_res;
- int out_of_order = 1;
- if (!(*head))
- return(1);
- if (!((*head)->next))
- return(0);
- while (out_of_order) {
- out_of_order = 0;
- // Special case for swapping list head
- if (((*head)->next) &&
- ((*head)->length < (*head)->next->length)) {
- out_of_order++;
- current_res = *head;
- *head = (*head)->next;
- current_res->next = (*head)->next;
- (*head)->next = current_res;
- }
- current_res = *head;
- while (current_res->next && current_res->next->next) {
- if (current_res->next->length < current_res->next->next->length) {
- out_of_order++;
- next_res = current_res->next;
- current_res->next = current_res->next->next;
- current_res = current_res->next;
- next_res->next = current_res->next;
- current_res->next = next_res;
- } else
- current_res = current_res->next;
- }
- } // End of out_of_order loop
- return(0);
- }
- /*
- * do_pre_bridge_resource_split
- *
- * Returns zero or one node of resources that aren't in use
- *
- */
- static struct pci_resource *do_pre_bridge_resource_split (struct pci_resource **head, struct pci_resource **orig_head, u32 alignment)
- {
- struct pci_resource *prevnode = NULL;
- struct pci_resource *node;
- struct pci_resource *split_node;
- u32 rc;
- u32 temp_dword;
- dbg("do_pre_bridge_resource_splitn");
- if (!(*head) || !(*orig_head))
- return(NULL);
- rc = cpqhp_resource_sort_and_combine(head);
- if (rc)
- return(NULL);
- if ((*head)->base != (*orig_head)->base)
- return(NULL);
- if ((*head)->length == (*orig_head)->length)
- return(NULL);
- // If we got here, there the bridge requires some of the resource, but
- // we may be able to split some off of the front
- node = *head;
- if (node->length & (alignment -1)) {
- // this one isn't an aligned length, so we'll make a new entry
- // and split it up.
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- temp_dword = (node->length | (alignment-1)) + 1 - alignment;
- split_node->base = node->base;
- split_node->length = temp_dword;
- node->length -= temp_dword;
- node->base += split_node->length;
- // Put it in the list
- *head = split_node;
- split_node->next = node;
- }
- if (node->length < alignment) {
- return(NULL);
- }
- // Now unlink it
- if (*head == node) {
- *head = node->next;
- node->next = NULL;
- } else {
- prevnode = *head;
- while (prevnode->next != node)
- prevnode = prevnode->next;
- prevnode->next = node->next;
- node->next = NULL;
- }
- return(node);
- }
- /*
- * do_bridge_resource_split
- *
- * Returns zero or one node of resources that aren't in use
- *
- */
- static struct pci_resource *do_bridge_resource_split (struct pci_resource **head, u32 alignment)
- {
- struct pci_resource *prevnode = NULL;
- struct pci_resource *node;
- u32 rc;
- u32 temp_dword;
- if (!(*head))
- return(NULL);
- rc = cpqhp_resource_sort_and_combine(head);
- if (rc)
- return(NULL);
- node = *head;
- while (node->next) {
- prevnode = node;
- node = node->next;
- kfree(prevnode);
- }
- if (node->length < alignment) {
- kfree(node);
- return(NULL);
- }
- if (node->base & (alignment - 1)) {
- // Short circuit if adjusted size is too small
- temp_dword = (node->base | (alignment-1)) + 1;
- if ((node->length - (temp_dword - node->base)) < alignment) {
- kfree(node);
- return(NULL);
- }
- node->length -= (temp_dword - node->base);
- node->base = temp_dword;
- }
- if (node->length & (alignment - 1)) {
- // There's stuff in use after this node
- kfree(node);
- return(NULL);
- }
- return(node);
- }
- /*
- * get_io_resource
- *
- * this function sorts the resource list by size and then
- * returns the first node of "size" length that is not in the
- * ISA aliasing window. If it finds a node larger than "size"
- * it will split it up.
- *
- * size must be a power of two.
- */
- static struct pci_resource *get_io_resource (struct pci_resource **head, u32 size)
- {
- struct pci_resource *prevnode;
- struct pci_resource *node;
- struct pci_resource *split_node;
- u32 temp_dword;
- if (!(*head))
- return(NULL);
- if ( cpqhp_resource_sort_and_combine(head) )
- return(NULL);
- if ( sort_by_size(head) )
- return(NULL);
- for (node = *head; node; node = node->next) {
- if (node->length < size)
- continue;
- if (node->base & (size - 1)) {
- // this one isn't base aligned properly
- // so we'll make a new entry and split it up
- temp_dword = (node->base | (size-1)) + 1;
- // Short circuit if adjusted size is too small
- if ((node->length - (temp_dword - node->base)) < size)
- continue;
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- split_node->base = node->base;
- split_node->length = temp_dword - node->base;
- node->base = temp_dword;
- node->length -= split_node->length;
- // Put it in the list
- split_node->next = node->next;
- node->next = split_node;
- } // End of non-aligned base
- // Don't need to check if too small since we already did
- if (node->length > size) {
- // this one is longer than we need
- // so we'll make a new entry and split it up
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- split_node->base = node->base + size;
- split_node->length = node->length - size;
- node->length = size;
- // Put it in the list
- split_node->next = node->next;
- node->next = split_node;
- } // End of too big on top end
- // For IO make sure it's not in the ISA aliasing space
- if (node->base & 0x300L)
- continue;
- // If we got here, then it is the right size
- // Now take it out of the list
- if (*head == node) {
- *head = node->next;
- } else {
- prevnode = *head;
- while (prevnode->next != node)
- prevnode = prevnode->next;
- prevnode->next = node->next;
- }
- node->next = NULL;
- // Stop looping
- break;
- }
- return(node);
- }
- /*
- * get_max_resource
- *
- * Gets the largest node that is at least "size" big from the
- * list pointed to by head. It aligns the node on top and bottom
- * to "size" alignment before returning it.
- */
- static struct pci_resource *get_max_resource (struct pci_resource **head, u32 size)
- {
- struct pci_resource *max;
- struct pci_resource *temp;
- struct pci_resource *split_node;
- u32 temp_dword;
- if (!(*head))
- return(NULL);
- if (cpqhp_resource_sort_and_combine(head))
- return(NULL);
- if (sort_by_max_size(head))
- return(NULL);
- for (max = *head;max; max = max->next) {
- // If not big enough we could probably just bail,
- // instead we'll continue to the next.
- if (max->length < size)
- continue;
- if (max->base & (size - 1)) {
- // this one isn't base aligned properly
- // so we'll make a new entry and split it up
- temp_dword = (max->base | (size-1)) + 1;
- // Short circuit if adjusted size is too small
- if ((max->length - (temp_dword - max->base)) < size)
- continue;
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- split_node->base = max->base;
- split_node->length = temp_dword - max->base;
- max->base = temp_dword;
- max->length -= split_node->length;
- // Put it next in the list
- split_node->next = max->next;
- max->next = split_node;
- }
- if ((max->base + max->length) & (size - 1)) {
- // this one isn't end aligned properly at the top
- // so we'll make a new entry and split it up
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- temp_dword = ((max->base + max->length) & ~(size - 1));
- split_node->base = temp_dword;
- split_node->length = max->length + max->base
- - split_node->base;
- max->length -= split_node->length;
- // Put it in the list
- split_node->next = max->next;
- max->next = split_node;
- }
- // Make sure it didn't shrink too much when we aligned it
- if (max->length < size)
- continue;
- // Now take it out of the list
- temp = (struct pci_resource*) *head;
- if (temp == max) {
- *head = max->next;
- } else {
- while (temp && temp->next != max) {
- temp = temp->next;
- }
- temp->next = max->next;
- }
- max->next = NULL;
- return(max);
- }
- // If we get here, we couldn't find one
- return(NULL);
- }
- /*
- * get_resource
- *
- * this function sorts the resource list by size and then
- * returns the first node of "size" length. If it finds a node
- * larger than "size" it will split it up.
- *
- * size must be a power of two.
- */
- static struct pci_resource *get_resource (struct pci_resource **head, u32 size)
- {
- struct pci_resource *prevnode;
- struct pci_resource *node;
- struct pci_resource *split_node;
- u32 temp_dword;
- if (!(*head))
- return(NULL);
- if ( cpqhp_resource_sort_and_combine(head) )
- return(NULL);
- if ( sort_by_size(head) )
- return(NULL);
- for (node = *head; node; node = node->next) {
- dbg(__FUNCTION__": req_size =%x node=%p, base=%x, length=%xn",
- size, node, node->base, node->length);
- if (node->length < size)
- continue;
- if (node->base & (size - 1)) {
- dbg(__FUNCTION__": not alignedn");
- // this one isn't base aligned properly
- // so we'll make a new entry and split it up
- temp_dword = (node->base | (size-1)) + 1;
- // Short circuit if adjusted size is too small
- if ((node->length - (temp_dword - node->base)) < size)
- continue;
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- split_node->base = node->base;
- split_node->length = temp_dword - node->base;
- node->base = temp_dword;
- node->length -= split_node->length;
- // Put it in the list
- split_node->next = node->next;
- node->next = split_node;
- } // End of non-aligned base
- // Don't need to check if too small since we already did
- if (node->length > size) {
- dbg(__FUNCTION__": too bign");
- // this one is longer than we need
- // so we'll make a new entry and split it up
- split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!split_node)
- return(NULL);
- split_node->base = node->base + size;
- split_node->length = node->length - size;
- node->length = size;
- // Put it in the list
- split_node->next = node->next;
- node->next = split_node;
- } // End of too big on top end
- dbg(__FUNCTION__": got one!!!n");
- // If we got here, then it is the right size
- // Now take it out of the list
- if (*head == node) {
- *head = node->next;
- } else {
- prevnode = *head;
- while (prevnode->next != node)
- prevnode = prevnode->next;
- prevnode->next = node->next;
- }
- node->next = NULL;
- // Stop looping
- break;
- }
- return(node);
- }
- /*
- * cpqhp_resource_sort_and_combine
- *
- * Sorts all of the nodes in the list in ascending order by
- * their base addresses. Also does garbage collection by
- * combining adjacent nodes.
- *
- * returns 0 if success
- */
- int cpqhp_resource_sort_and_combine(struct pci_resource **head)
- {
- struct pci_resource *node1;
- struct pci_resource *node2;
- int out_of_order = 1;
- dbg(__FUNCTION__": head = %p, *head = %pn", head, *head);
- if (!(*head))
- return(1);
- dbg("*head->next = %pn",(*head)->next);
- if (!(*head)->next)
- return(0); /* only one item on the list, already sorted! */
- dbg("*head->base = 0x%xn",(*head)->base);
- dbg("*head->next->base = 0x%xn",(*head)->next->base);
- while (out_of_order) {
- out_of_order = 0;
- // Special case for swapping list head
- if (((*head)->next) &&
- ((*head)->base > (*head)->next->base)) {
- node1 = *head;
- (*head) = (*head)->next;
- node1->next = (*head)->next;
- (*head)->next = node1;
- out_of_order++;
- }
- node1 = (*head);
- while (node1->next && node1->next->next) {
- if (node1->next->base > node1->next->next->base) {
- out_of_order++;
- node2 = node1->next;
- node1->next = node1->next->next;
- node1 = node1->next;
- node2->next = node1->next;
- node1->next = node2;
- } else
- node1 = node1->next;
- }
- } // End of out_of_order loop
- node1 = *head;
- while (node1 && node1->next) {
- if ((node1->base + node1->length) == node1->next->base) {
- // Combine
- dbg("8..n");
- node1->length += node1->next->length;
- node2 = node1->next;
- node1->next = node1->next->next;
- kfree(node2);
- } else
- node1 = node1->next;
- }
- return(0);
- }
- void cpqhp_ctrl_intr(int IRQ, struct controller * ctrl, struct pt_regs *regs)
- {
- u8 schedule_flag = 0;
- u16 misc;
- u32 Diff;
- u32 temp_dword;
-
- misc = readw(ctrl->hpc_reg + MISC);
- //*********************************
- // Check to see if it was our interrupt
- //*********************************
- if (!(misc & 0x000C)) {
- return;
- }
- if (misc & 0x0004) {
- //*********************************
- // Serial Output interrupt Pending
- //*********************************
- // Clear the interrupt
- misc |= 0x0004;
- writew(misc, ctrl->hpc_reg + MISC);
- // Read to clear posted writes
- misc = readw(ctrl->hpc_reg + MISC);
- dbg (__FUNCTION__" - waking upn");
- wake_up_interruptible(&ctrl->queue);
- }
- if (misc & 0x0008) {
- // General-interrupt-input interrupt Pending
- Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
- ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
- // Clear the interrupt
- writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
- // Read it back to clear any posted writes
- temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
- if (!Diff) {
- // Clear all interrupts
- writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
- }
- schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
- schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
- schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
- }
- if (schedule_flag) {
- up(&event_semaphore);
- dbg("Signal event_semaphoren");
- mark_bh(IMMEDIATE_BH);
- }
- }
- /**
- * cpqhp_slot_create - Creates a node and adds it to the proper bus.
- * @busnumber - bus where new node is to be located
- *
- * Returns pointer to the new node or NULL if unsuccessful
- */
- struct pci_func *cpqhp_slot_create(u8 busnumber)
- {
- struct pci_func *new_slot;
- struct pci_func *next;
- new_slot = (struct pci_func *) kmalloc(sizeof(struct pci_func), GFP_KERNEL);
- if (new_slot == NULL) {
- // I'm not dead yet!
- // You will be.
- return(new_slot);
- }
- memset(new_slot, 0, sizeof(struct pci_func));
- new_slot->next = NULL;
- new_slot->configured = 1;
- if (cpqhp_slot_list[busnumber] == NULL) {
- cpqhp_slot_list[busnumber] = new_slot;
- } else {
- next = cpqhp_slot_list[busnumber];
- while (next->next != NULL)
- next = next->next;
- next->next = new_slot;
- }
- return(new_slot);
- }
- /*
- * slot_remove - Removes a node from the linked list of slots.
- * @old_slot: slot to remove
- *
- * Returns 0 if successful, !0 otherwise.
- */
- static int slot_remove(struct pci_func * old_slot)
- {
- struct pci_func *next;
- if (old_slot == NULL)
- return(1);
- next = cpqhp_slot_list[old_slot->bus];
- if (next == NULL) {
- return(1);
- }
- if (next == old_slot) {
- cpqhp_slot_list[old_slot->bus] = old_slot->next;
- cpqhp_destroy_board_resources(old_slot);
- kfree(old_slot);
- return(0);
- }
- while ((next->next != old_slot) && (next->next != NULL)) {
- next = next->next;
- }
- if (next->next == old_slot) {
- next->next = old_slot->next;
- cpqhp_destroy_board_resources(old_slot);
- kfree(old_slot);
- return(0);
- } else
- return(2);
- }
- /**
- * bridge_slot_remove - Removes a node from the linked list of slots.
- * @bridge: bridge to remove
- *
- * Returns 0 if successful, !0 otherwise.
- */
- static int bridge_slot_remove(struct pci_func *bridge)
- {
- u8 subordinateBus, secondaryBus;
- u8 tempBus;
- struct pci_func *next;
- if (bridge == NULL)
- return(1);
- secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
- subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
- for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
- next = cpqhp_slot_list[tempBus];
- while (!slot_remove(next)) {
- next = cpqhp_slot_list[tempBus];
- }
- }
- next = cpqhp_slot_list[bridge->bus];
- if (next == NULL) {
- return(1);
- }
- if (next == bridge) {
- cpqhp_slot_list[bridge->bus] = bridge->next;
- kfree(bridge);
- return(0);
- }
- while ((next->next != bridge) && (next->next != NULL)) {
- next = next->next;
- }
- if (next->next == bridge) {
- next->next = bridge->next;
- kfree(bridge);
- return(0);
- } else
- return(2);
- }
- /**
- * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
- * @bus: bus to find
- * @device: device to find
- * @index: is 0 for first function found, 1 for the second...
- *
- * Returns pointer to the node if successful, %NULL otherwise.
- */
- struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
- {
- int found = -1;
- struct pci_func *func;
- func = cpqhp_slot_list[bus];
- if ((func == NULL) || ((func->device == device) && (index == 0)))
- return(func);
- if (func->device == device)
- found++;
- while (func->next != NULL) {
- func = func->next;
- if (func->device == device)
- found++;
- if (found == index)
- return(func);
- }
- return(NULL);
- }
- // DJZ: I don't think is_bridge will work as is.
- //FIXME
- static int is_bridge(struct pci_func * func)
- {
- // Check the header type
- if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
- return 1;
- else
- return 0;
- }
- /* the following routines constitute the bulk of the
- hotplug controller logic
- */
- /**
- * board_replaced - Called after a board has been replaced in the system.
- *
- * This is only used if we don't have resources for hot add
- * Turns power on for the board
- * Checks to see if board is the same
- * If board is same, reconfigures it
- * If board isn't same, turns it back off.
- *
- */
- static u32 board_replaced(struct pci_func * func, struct controller * ctrl)
- {
- u8 hp_slot;
- u8 temp_byte;
- u32 index;
- u32 rc = 0;
- u32 src = 8;
- hp_slot = func->device - ctrl->slot_device_offset;
- if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
- //*********************************
- // The switch is open.
- //*********************************
- rc = INTERLOCK_OPEN;
- } else if (is_slot_enabled (ctrl, hp_slot)) {
- //*********************************
- // The board is already on
- //*********************************
- rc = CARD_FUNCTIONING;
- } else {
- if (ctrl->speed == 1) {
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- // turn on board without attaching to the bus
- enable_slot_power (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Change bits in slot power register to force another shift out
- // NOTE: this is to work around the timer bug
- temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
- writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
- writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- if (!(readl(ctrl->hpc_reg + NON_INT_INPUT) & (0x01 << hp_slot))) {
- rc = WRONG_BUS_FREQUENCY;
- }
- // turn off board without attaching to the bus
- disable_slot_power (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- if (rc)
- return(rc);
- }
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- slot_enable (ctrl, hp_slot);
- green_LED_blink (ctrl, hp_slot);
- amber_LED_off (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- // Wait for ~1 second because of hot plug spec
- long_delay(1*HZ);
- // Check for a power fault
- if (func->status == 0xFF) {
- // power fault occurred, but it was benign
- rc = POWER_FAILURE;
- func->status = 0;
- } else
- rc = cpqhp_valid_replace(ctrl, func);
- if (!rc) {
- // It must be the same board
- rc = cpqhp_configure_board(ctrl, func);
- if (rc || src) {
- // If configuration fails, turn it off
- // Get slot won't work for devices behind bridges, but
- // in this case it will always be called for the "base"
- // bus/dev/func of an adapter.
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
- slot_disable (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- if (rc)
- return(rc);
- else
- return(1);
- }
- func->status = 0;
- func->switch_save = 0x10;
- index = 1;
- while (((func = cpqhp_slot_find(func->bus, func->device, index)) != NULL) && !rc) {
- rc |= cpqhp_configure_board(ctrl, func);
- index++;
- }
- if (rc) {
- // If configuration fails, turn it off
- // Get slot won't work for devices behind bridges, but
- // in this case it will always be called for the "base"
- // bus/dev/func of an adapter.
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
- slot_disable (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- return(rc);
- }
- // Done configuring so turn LED on full time
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- green_LED_on (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- rc = 0;
- } else {
- // Something is wrong
- // Get slot won't work for devices behind bridges, but
- // in this case it will always be called for the "base"
- // bus/dev/func of an adapter.
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
- slot_disable (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- }
- }
- return(rc);
- }
- /**
- * board_added - Called after a board has been added to the system.
- *
- * Turns power on for the board
- * Configures board
- *
- */
- static u32 board_added(struct pci_func * func, struct controller * ctrl)
- {
- u8 hp_slot;
- u8 temp_byte;
- int index;
- u32 temp_register = 0xFFFFFFFF;
- u32 rc = 0;
- struct pci_func *new_slot = NULL;
- struct slot *p_slot;
- struct resource_lists res_lists;
- hp_slot = func->device - ctrl->slot_device_offset;
- dbg(__FUNCTION__": func->device, slot_offset, hp_slot = %d, %d ,%dn",
- func->device, ctrl->slot_device_offset, hp_slot);
- if (ctrl->speed == 1) {
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- // turn on board without attaching to the bus
- enable_slot_power (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Change bits in slot power register to force another shift out
- // NOTE: this is to work around the timer bug
- temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
- writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
- writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- if (!(readl(ctrl->hpc_reg + NON_INT_INPUT) & (0x01 << hp_slot))) {
- rc = WRONG_BUS_FREQUENCY;
- }
- // turn off board without attaching to the bus
- disable_slot_power (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- if (rc)
- return(rc);
- }
- p_slot = find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
- // turn on board and blink green LED
- // Wait for exclusive access to hardware
- dbg(__FUNCTION__": before downn");
- down(&ctrl->crit_sect);
- dbg(__FUNCTION__": after downn");
- dbg(__FUNCTION__": before slot_enablen");
- slot_enable (ctrl, hp_slot);
- dbg(__FUNCTION__": before green_LED_blinkn");
- green_LED_blink (ctrl, hp_slot);
- dbg(__FUNCTION__": before amber_LED_blinkn");
- amber_LED_off (ctrl, hp_slot);
- dbg(__FUNCTION__": before set_SOGOn");
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- dbg(__FUNCTION__": before wait_for_ctrl_irqn");
- wait_for_ctrl_irq (ctrl);
- dbg(__FUNCTION__": after wait_for_ctrl_irqn");
- // Done with exclusive hardware access
- dbg(__FUNCTION__": before upn");
- up(&ctrl->crit_sect);
- dbg(__FUNCTION__": after upn");
- // Wait for ~1 second because of hot plug spec
- dbg(__FUNCTION__": before long_delayn");
- long_delay(1*HZ);
- dbg(__FUNCTION__": after long_delayn");
- dbg(__FUNCTION__": func status = %xn", func->status);
- // Check for a power fault
- if (func->status == 0xFF) {
- // power fault occurred, but it was benign
- temp_register = 0xFFFFFFFF;
- dbg(__FUNCTION__": temp register set to %x by power faultn", temp_register);
- rc = POWER_FAILURE;
- func->status = 0;
- } else {
- // Get vendor/device ID u32
- rc = pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_VENDOR_ID, &temp_register);
- dbg(__FUNCTION__": pci_read_config_dword returns %dn", rc);
- dbg(__FUNCTION__": temp_register is %xn", temp_register);
- if (rc != 0) {
- // Something's wrong here
- temp_register = 0xFFFFFFFF;
- dbg(__FUNCTION__": temp register set to %x by errorn", temp_register);
- }
- // Preset return code. It will be changed later if things go okay.
- rc = NO_ADAPTER_PRESENT;
- }
- // All F's is an empty slot or an invalid board
- if (temp_register != 0xFFFFFFFF) { // Check for a board in the slot
- res_lists.io_head = ctrl->io_head;
- res_lists.mem_head = ctrl->mem_head;
- res_lists.p_mem_head = ctrl->p_mem_head;
- res_lists.bus_head = ctrl->bus_head;
- res_lists.irqs = NULL;
- rc = configure_new_device(ctrl, func, 0, &res_lists);
- dbg(__FUNCTION__": back from configure_new_devicen");
- ctrl->io_head = res_lists.io_head;
- ctrl->mem_head = res_lists.mem_head;
- ctrl->p_mem_head = res_lists.p_mem_head;
- ctrl->bus_head = res_lists.bus_head;
- cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
- cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
- cpqhp_resource_sort_and_combine(&(ctrl->io_head));
- cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
- if (rc) {
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
- slot_disable (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- return(rc);
- } else {
- cpqhp_save_slot_config(ctrl, func);
- }
- func->status = 0;
- func->switch_save = 0x10;
- func->is_a_board = 0x01;
- //next, we will instantiate the linux pci_dev structures (with appropriate driver notification, if already present)
- dbg(__FUNCTION__": configure linux pci_dev structuren");
- index = 0;
- do {
- new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
- if (new_slot && !new_slot->pci_dev) {
- cpqhp_configure_device(ctrl, new_slot);
- }
- } while (new_slot);
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- green_LED_on (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- } else {
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
- slot_disable (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- return(rc);
- }
- return 0;
- }
- /**
- * remove_board - Turns off slot and LED's
- *
- */
- static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
- {
- int index;
- u8 skip = 0;
- u8 device;
- u8 hp_slot;
- u8 temp_byte;
- u32 rc;
- struct resource_lists res_lists;
- struct pci_func *temp_func;
- if (func == NULL)
- return(1);
- if (cpqhp_unconfigure_device(func))
- return(1);
- device = func->device;
- hp_slot = func->device - ctrl->slot_device_offset;
- dbg("In "__FUNCTION__", hp_slot = %dn", hp_slot);
- // When we get here, it is safe to change base Address Registers.
- // We will attempt to save the base Address Register Lengths
- if (replace_flag || !ctrl->add_support)
- rc = cpqhp_save_base_addr_length(ctrl, func);
- else if (!func->bus_head && !func->mem_head &&
- !func->p_mem_head && !func->io_head) {
- // Here we check to see if we've saved any of the board's
- // resources already. If so, we'll skip the attempt to
- // determine what's being used.
- index = 0;
- temp_func = cpqhp_slot_find(func->bus, func->device, index++);
- while (temp_func) {
- if (temp_func->bus_head || temp_func->mem_head
- || temp_func->p_mem_head || temp_func->io_head) {
- skip = 1;
- break;
- }
- temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
- }
- if (!skip)
- rc = cpqhp_save_used_resources(ctrl, func);
- }
- // Change status to shutdown
- if (func->is_a_board)
- func->status = 0x01;
- func->configured = 0;
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- green_LED_off (ctrl, hp_slot);
- slot_disable (ctrl, hp_slot);
- set_SOGO(ctrl);
- // turn off SERR for slot
- temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
- temp_byte &= ~(0x01 << hp_slot);
- writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- if (!replace_flag && ctrl->add_support) {
- while (func) {
- res_lists.io_head = ctrl->io_head;
- res_lists.mem_head = ctrl->mem_head;
- res_lists.p_mem_head = ctrl->p_mem_head;
- res_lists.bus_head = ctrl->bus_head;
- cpqhp_return_board_resources(func, &res_lists);
- ctrl->io_head = res_lists.io_head;
- ctrl->mem_head = res_lists.mem_head;
- ctrl->p_mem_head = res_lists.p_mem_head;
- ctrl->bus_head = res_lists.bus_head;
- cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
- cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
- cpqhp_resource_sort_and_combine(&(ctrl->io_head));
- cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
- if (is_bridge(func)) {
- bridge_slot_remove(func);
- } else
- slot_remove(func);
- func = cpqhp_slot_find(ctrl->bus, device, 0);
- }
- // Setup slot structure with entry for empty slot
- func = cpqhp_slot_create(ctrl->bus);
- if (func == NULL) {
- // Out of memory
- return(1);
- }
- func->bus = ctrl->bus;
- func->device = device;
- func->function = 0;
- func->configured = 0;
- func->switch_save = 0x10;
- func->is_a_board = 0;
- func->p_task_event = NULL;
- }
- return 0;
- }
- static void pushbutton_helper_thread (unsigned long data)
- {
- pushbutton_pending = data;
- up(&event_semaphore);
- }
- // this is the main worker thread
- static int event_thread(void* data)
- {
- struct controller *ctrl;
- lock_kernel();
- daemonize();
-
- // New name
- strcpy(current->comm, "phpd_event");
-
- unlock_kernel();
- while (1) {
- dbg("!!!!event_thread sleepingn");
- down_interruptible (&event_semaphore);
- dbg("event_thread woken finished = %dn", event_finished);
- if (event_finished) break;
- /* Do stuff here */
- if (pushbutton_pending)
- cpqhp_pushbutton_thread(pushbutton_pending);
- else
- for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
- interrupt_event_handler(ctrl);
- }
- dbg("event_thread signals exitn");
- up(&event_exit);
- return 0;
- }
- int cpqhp_event_start_thread (void)
- {
- int pid;
- /* initialize our semaphores */
- init_MUTEX(&delay_sem);
- init_MUTEX_LOCKED(&event_semaphore);
- init_MUTEX_LOCKED(&event_exit);
- event_finished=0;
- pid = kernel_thread(event_thread, 0, 0);
- if (pid < 0) {
- err ("Can't start up our event threadn");
- return -1;
- }
- dbg("Our event thread pid = %dn", pid);
- return 0;
- }
- void cpqhp_event_stop_thread (void)
- {
- event_finished = 1;
- dbg("event_thread finish command givenn");
- up(&event_semaphore);
- dbg("wait for event_thread to exitn");
- down(&event_exit);
- }
- static int update_slot_info (struct controller *ctrl, struct slot *slot)
- {
- struct hotplug_slot_info *info;
- char buffer[SLOT_NAME_SIZE];
- int result;
- info = kmalloc (sizeof (struct hotplug_slot_info), GFP_KERNEL);
- if (!info)
- return -ENOMEM;
- make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot);
- info->power_status = get_slot_enabled(ctrl, slot);
- info->attention_status = cpq_get_attention_status(ctrl, slot);
- info->latch_status = cpq_get_latch_status(ctrl, slot);
- info->adapter_status = get_presence_status(ctrl, slot);
- result = pci_hp_change_slot_info(buffer, info);
- kfree (info);
- return result;
- }
- static void interrupt_event_handler(struct controller *ctrl)
- {
- int loop = 0;
- int change = 1;
- struct pci_func *func;
- u8 hp_slot;
- struct slot *p_slot;
- while (change) {
- change = 0;
- for (loop = 0; loop < 10; loop++) {
- //dbg("loop %dn", loop);
- if (ctrl->event_queue[loop].event_type != 0) {
- hp_slot = ctrl->event_queue[loop].hp_slot;
- func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
- p_slot = find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
- dbg("hp_slot %d, func %p, p_slot %pn",
- hp_slot, func, p_slot);
- if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
- dbg("button pressedn");
- } else if (ctrl->event_queue[loop].event_type ==
- INT_BUTTON_CANCEL) {
- dbg("button canceln");
- del_timer(&p_slot->task_event);
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- if (p_slot->state == BLINKINGOFF_STATE) {
- // slot is on
- // turn on green LED
- dbg("turn on green LEDn");
- green_LED_on (ctrl, hp_slot);
- } else if (p_slot->state == BLINKINGON_STATE) {
- // slot is off
- // turn off green LED
- dbg("turn off green LEDn");
- green_LED_off (ctrl, hp_slot);
- }
- info(msg_button_cancel, p_slot->number);
- p_slot->state = STATIC_STATE;
- amber_LED_off (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- }
- // ***********button Released (No action on press...)
- else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
- dbg("button releasen");
- if (is_slot_enabled (ctrl, hp_slot)) {
- // slot is on
- dbg("slot is onn");
- p_slot->state = BLINKINGOFF_STATE;
- info(msg_button_off, p_slot->number);
- } else {
- // slot is off
- dbg("slot is offn");
- p_slot->state = BLINKINGON_STATE;
- info(msg_button_on, p_slot->number);
- }
- // Wait for exclusive access to hardware
- down(&ctrl->crit_sect);
- dbg("blink green LED and turn off ambern");
- amber_LED_off (ctrl, hp_slot);
- green_LED_blink (ctrl, hp_slot);
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- // Done with exclusive hardware access
- up(&ctrl->crit_sect);
- init_timer(&p_slot->task_event);
- p_slot->hp_slot = hp_slot;
- p_slot->ctrl = ctrl;
- // p_slot->physical_slot = physical_slot;
- p_slot->task_event.expires = jiffies + 5 * HZ; // 5 second delay
- p_slot->task_event.function = pushbutton_helper_thread;
- p_slot->task_event.data = (u32) p_slot;
- dbg("add_timer p_slot = %pn", p_slot);
- add_timer(&p_slot->task_event);
- }
- // ***********POWER FAULT
- else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
- dbg("power faultn");
- } else {
- /* refresh notification */
- if (p_slot)
- update_slot_info(ctrl, p_slot);
- }
- ctrl->event_queue[loop].event_type = 0;
- change = 1;
- }
- } // End of FOR loop
- }
- return;
- }
- /**
- * cpqhp_pushbutton_thread
- *
- * Scheduled procedure to handle blocking stuff for the pushbuttons
- * Handles all pending events and exits.
- *
- */
- void cpqhp_pushbutton_thread (unsigned long slot)
- {
- u8 hp_slot;
- u8 device;
- struct pci_func *func;
- struct slot *p_slot = (struct slot *) slot;
- struct controller *ctrl = (struct controller *) p_slot->ctrl;
- pushbutton_pending = 0;
- hp_slot = p_slot->hp_slot;
- device = p_slot->device;
- if (is_slot_enabled (ctrl, hp_slot)) {
- p_slot->state = POWEROFF_STATE;
- // power Down board
- func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
- dbg("In power_down_board, func = %p, ctrl = %pn", func, ctrl);
- if (!func) {
- dbg("Error! func NULL in "__FUNCTION__"n");
- return ;
- }
- if (func != NULL && ctrl != NULL) {
- if (cpqhp_process_SS(ctrl, func) != 0) {
- amber_LED_on (ctrl, hp_slot);
- green_LED_on (ctrl, hp_slot);
-
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- }
- }
- p_slot->state = STATIC_STATE;
- } else {
- p_slot->state = POWERON_STATE;
- // slot is off
- func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
- dbg("In add_board, func = %p, ctrl = %pn", func, ctrl);
- if (!func) {
- dbg("Error! func NULL in "__FUNCTION__"n");
- return ;
- }
- if (func != NULL && ctrl != NULL) {
- if (cpqhp_process_SI(ctrl, func) != 0) {
- amber_LED_on (ctrl, hp_slot);
- green_LED_off (ctrl, hp_slot);
-
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- }
- }
- p_slot->state = STATIC_STATE;
- }
- return;
- }
- int cpqhp_process_SI (struct controller *ctrl, struct pci_func *func)
- {
- u8 device, hp_slot;
- u16 temp_word;
- u32 tempdword;
- int rc;
- struct slot* p_slot;
- int physical_slot = 0;
- if (!ctrl)
- return(1);
- tempdword = 0;
- device = func->device;
- hp_slot = device - ctrl->slot_device_offset;
- p_slot = find_slot(ctrl, device);
- if (p_slot) {
- physical_slot = p_slot->number;
- }
- // Check to see if the interlock is closed
- tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
- if (tempdword & (0x01 << hp_slot)) {
- return(1);
- }
- if (func->is_a_board) {
- rc = board_replaced(func, ctrl);
- } else {
- // add board
- slot_remove(func);
- func = cpqhp_slot_create(ctrl->bus);
- if (func == NULL) {
- return(1);
- }
- func->bus = ctrl->bus;
- func->device = device;
- func->function = 0;
- func->configured = 0;
- func->is_a_board = 1;
- // We have to save the presence info for these slots
- temp_word = ctrl->ctrl_int_comp >> 16;
- func->presence_save = (temp_word >> hp_slot) & 0x01;
- func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
- if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
- func->switch_save = 0;
- } else {
- func->switch_save = 0x10;
- }
- rc = board_added(func, ctrl);
- if (rc) {
- if (is_bridge(func)) {
- bridge_slot_remove(func);
- } else
- slot_remove(func);
- // Setup slot structure with entry for empty slot
- func = cpqhp_slot_create(ctrl->bus);
- if (func == NULL) {
- // Out of memory
- return(1);
- }
- func->bus = ctrl->bus;
- func->device = device;
- func->function = 0;
- func->configured = 0;
- func->is_a_board = 0;
- // We have to save the presence info for these slots
- temp_word = ctrl->ctrl_int_comp >> 16;
- func->presence_save = (temp_word >> hp_slot) & 0x01;
- func->presence_save |=
- (temp_word >> (hp_slot + 7)) & 0x02;
- if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
- func->switch_save = 0;
- } else {
- func->switch_save = 0x10;
- }
- }
- }
- if (rc) {
- dbg(__FUNCTION__": rc = %dn", rc);
- }
- if (p_slot)
- update_slot_info(ctrl, p_slot);
- return rc;
- }
- int cpqhp_process_SS (struct controller *ctrl, struct pci_func *func)
- {
- u8 device, class_code, header_type, BCR;
- u8 index = 0;
- u8 replace_flag;
- u32 rc = 0;
- struct slot* p_slot;
- int physical_slot=0;
- device = func->device;
- func = cpqhp_slot_find(ctrl->bus, device, index++);
- p_slot = find_slot(ctrl, device);
- if (p_slot) {
- physical_slot = p_slot->number;
- }
- // Make sure there are no video controllers here
- while (func && !rc) {
- // Check the Class Code
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0B, &class_code);
- if (rc)
- return rc;
- if (class_code == PCI_BASE_CLASS_DISPLAY) {
- /* Display/Video adapter (not supported) */
- rc = REMOVE_NOT_SUPPORTED;
- } else {
- // See if it's a bridge
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
- if (rc)
- return rc;
- // If it's a bridge, check the VGA Enable bit
- if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_BRIDGE_CONTROL, &BCR);
- if (rc)
- return rc;
- // If the VGA Enable bit is set, remove isn't supported
- if (BCR & PCI_BRIDGE_CTL_VGA) {
- rc = REMOVE_NOT_SUPPORTED;
- }
- }
- }
- func = cpqhp_slot_find(ctrl->bus, device, index++);
- }
- func = cpqhp_slot_find(ctrl->bus, device, 0);
- if ((func != NULL) && !rc) {
- //FIXME: Replace flag should be passed into process_SS
- replace_flag = !(ctrl->add_support);
- rc = remove_board(func, replace_flag, ctrl);
- } else if (!rc) {
- rc = 1;
- }
- if (p_slot)
- update_slot_info(ctrl, p_slot);
- return(rc);
- }
- /**
- * hardware_test - runs hardware tests
- *
- * For hot plug ctrl folks to play with.
- * test_num is the number entered in the GUI
- *
- */
- int cpqhp_hardware_test(struct controller *ctrl, int test_num)
- {
- u32 save_LED;
- u32 work_LED;
- int loop;
- int num_of_slots;
- num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
- switch (test_num) {
- case 1:
- // Do stuff here!
- // Do that funky LED thing
- save_LED = readl(ctrl->hpc_reg + LED_CONTROL); // so we can restore them later
- work_LED = 0x01010101;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- for (loop = 0; loop < num_of_slots; loop++) {
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- work_LED = work_LED << 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- long_delay((2*HZ)/10);
- }
- for (loop = 0; loop < num_of_slots; loop++) {
- work_LED = work_LED >> 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((2*HZ)/10);
- }
- for (loop = 0; loop < num_of_slots; loop++) {
- work_LED = work_LED << 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((2*HZ)/10);
- }
- for (loop = 0; loop < num_of_slots; loop++) {
- work_LED = work_LED >> 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((2*HZ)/10);
- }
- work_LED = 0x01010000;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- for (loop = 0; loop < num_of_slots; loop++) {
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- work_LED = work_LED << 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- long_delay((2*HZ)/10);
- }
- for (loop = 0; loop < num_of_slots; loop++) {
- work_LED = work_LED >> 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((2*HZ)/10);
- }
- work_LED = 0x00000101;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- for (loop = 0; loop < num_of_slots; loop++) {
- work_LED = work_LED << 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((2*HZ)/10);
- }
- for (loop = 0; loop < num_of_slots; loop++) {
- work_LED = work_LED >> 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((2*HZ)/10);
- }
- work_LED = 0x01010000;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- for (loop = 0; loop < num_of_slots; loop++) {
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((3*HZ)/10);
- work_LED = work_LED >> 16;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
-
- set_SOGO(ctrl);
- // Wait for SOGO interrupt
- wait_for_ctrl_irq (ctrl);
- // Get ready for next iteration
- long_delay((3*HZ)/10);
- work_LED = work_LED << 16;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- work_LED = work_LED << 1;
- writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
- }
- writel (save_LED, ctrl->hpc_reg + LED_CONTROL); // put it back the way it was
- set_SOGO(ctrl);
- // Wait for SOBS to be unset
- wait_for_ctrl_irq (ctrl);
- break;
- case 2:
- // Do other stuff here!
- break;
- case 3:
- // and more...
- break;
- }
- return 0;
- }
- /**
- * configure_new_device - Configures the PCI header information of one board.
- *
- * @ctrl: pointer to controller structure
- * @func: pointer to function structure
- * @behind_bridge: 1 if this is a recursive call, 0 if not
- * @resources: pointer to set of resource lists
- *
- * Returns 0 if success
- *
- */
- static u32 configure_new_device (struct controller * ctrl, struct pci_func * func,
- u8 behind_bridge, struct resource_lists * resources)
- {
- u8 temp_byte, function, max_functions, stop_it;
- int rc;
- u32 ID;
- struct pci_func *new_slot;
- int index;
- new_slot = func;
- dbg(__FUNCTION__"n");
- // Check for Multi-function device
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0E, &temp_byte);
- if (rc) {
- dbg(__FUNCTION__": rc = %dn", rc);
- return rc;
- }
- if (temp_byte & 0x80) // Multi-function device
- max_functions = 8;
- else
- max_functions = 1;
- function = 0;
- do {
- rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
- if (rc) {
- dbg("configure_new_function failed %dn",rc);
- index = 0;
- while (new_slot) {
- new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
- if (new_slot)
- cpqhp_return_board_resources(new_slot, resources);
- }
- return(rc);
- }
- function++;
- stop_it = 0;
- // The following loop skips to the next present function
- // and creates a board structure
- while ((function < max_functions) && (!stop_it)) {
- pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, function, 0x00, &ID);
- if (ID == 0xFFFFFFFF) { // There's nothing there.
- function++;
- } else { // There's something there
- // Setup slot structure.
- new_slot = cpqhp_slot_create(func->bus);
- if (new_slot == NULL) {
- // Out of memory
- return(1);
- }
- new_slot->bus = func->bus;
- new_slot->device = func->device;
- new_slot->function = function;
- new_slot->is_a_board = 1;
- new_slot->status = 0;
- stop_it++;
- }
- }
- } while (function < max_functions);
- dbg("returning from configure_new_devicen");
- return 0;
- }
- /*
- Configuration logic that involves the hotplug data structures and
- their bookkeeping
- */
- /**
- * configure_new_function - Configures the PCI header information of one device
- *
- * @ctrl: pointer to controller structure
- * @func: pointer to function structure
- * @behind_bridge: 1 if this is a recursive call, 0 if not
- * @resources: pointer to set of resource lists
- *
- * Calls itself recursively for bridged devices.
- * Returns 0 if success
- *
- */
- static int configure_new_function (struct controller * ctrl, struct pci_func * func,
- u8 behind_bridge, struct resource_lists * resources)
- {
- int cloop;
- u8 IRQ;
- u8 temp_byte;
- u8 device;
- u8 class_code;
- u16 command;
- u16 temp_word;
- u32 temp_dword;
- u32 rc;
- u32 temp_register;
- u32 base;
- u32 ID;
- struct pci_resource *mem_node;
- struct pci_resource *p_mem_node;
- struct pci_resource *io_node;
- struct pci_resource *bus_node;
- struct pci_resource *hold_mem_node;
- struct pci_resource *hold_p_mem_node;
- struct pci_resource *hold_IO_node;
- struct pci_resource *hold_bus_node;
- struct irq_mapping irqs;
- struct pci_func *new_slot;
- struct resource_lists temp_resources;
- // Check for Bridge
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &temp_byte);
- if (rc)
- return rc;
- if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
- // set Primary bus
- dbg("set Primary bus = %dn", func->bus);
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PRIMARY_BUS, func->bus);
- if (rc)
- return rc;
- // find range of busses to use
- dbg("find ranges of buses to usen");
- bus_node = get_max_resource(&resources->bus_head, 1);
- // If we don't have any busses to allocate, we can't continue
- if (!bus_node)
- return -ENOMEM;
- // set Secondary bus
- temp_byte = bus_node->base;
- dbg("set Secondary bus = %dn", bus_node->base);
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, temp_byte);
- if (rc)
- return rc;
- // set subordinate bus
- temp_byte = bus_node->base + bus_node->length - 1;
- dbg("set subordinate bus = %dn", bus_node->base + bus_node->length - 1);
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBORDINATE_BUS, temp_byte);
- if (rc)
- return rc;
- // set subordinate Latency Timer and base Latency Timer
- temp_byte = 0x40;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SEC_LATENCY_TIMER, temp_byte);
- if (rc)
- return rc;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_LATENCY_TIMER, temp_byte);
- if (rc)
- return rc;
- // set Cache Line size
- temp_byte = 0x08;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_CACHE_LINE_SIZE, temp_byte);
- if (rc)
- return rc;
- // Setup the IO, memory, and prefetchable windows
- io_node = get_max_resource(&(resources->io_head), 0x1000);
- mem_node = get_max_resource(&(resources->mem_head), 0x100000);
- p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
- dbg("Setup the IO, memory, and prefetchable windowsn");
- dbg("io_noden");
- dbg("(base, len, next) (%x, %x, %p)n", io_node->base, io_node->length, io_node->next);
- dbg("mem_noden");
- dbg("(base, len, next) (%x, %x, %p)n", mem_node->base, mem_node->length, mem_node->next);
- dbg("p_mem_noden");
- dbg("(base, len, next) (%x, %x, %p)n", p_mem_node->base, p_mem_node->length, p_mem_node->next);
- // set up the IRQ info
- if (!resources->irqs) {
- irqs.barber_pole = 0;
- irqs.interrupt[0] = 0;
- irqs.interrupt[1] = 0;
- irqs.interrupt[2] = 0;
- irqs.interrupt[3] = 0;
- irqs.valid_INT = 0;
- } else {
- irqs.barber_pole = resources->irqs->barber_pole;
- irqs.interrupt[0] = resources->irqs->interrupt[0];
- irqs.interrupt[1] = resources->irqs->interrupt[1];
- irqs.interrupt[2] = resources->irqs->interrupt[2];
- irqs.interrupt[3] = resources->irqs->interrupt[3];
- irqs.valid_INT = resources->irqs->valid_INT;
- }
- // set up resource lists that are now aligned on top and bottom
- // for anything behind the bridge.
- temp_resources.bus_head = bus_node;
- temp_resources.io_head = io_node;
- temp_resources.mem_head = mem_node;
- temp_resources.p_mem_head = p_mem_node;
- temp_resources.irqs = &irqs;
- // Make copies of the nodes we are going to pass down so that
- // if there is a problem,we can just use these to free resources
- hold_bus_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- hold_IO_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- hold_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- hold_p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
- if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
- if (hold_bus_node)
- kfree(hold_bus_node);
- if (hold_IO_node)
- kfree(hold_IO_node);
- if (hold_mem_node)
- kfree(hold_mem_node);
- if (hold_p_mem_node)
- kfree(hold_p_mem_node);
- return(1);
- }
- memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
- bus_node->base += 1;
- bus_node->length -= 1;
- bus_node->next = NULL;
- // If we have IO resources copy them and fill in the bridge's
- // IO range registers
- if (io_node) {
- memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
- io_node->next = NULL;
- // set IO base and Limit registers
- temp_byte = io_node->base >> 8;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_BASE, temp_byte);
- temp_byte = (io_node->base + io_node->length - 1) >> 8;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, temp_byte);
- } else {
- kfree(hold_IO_node);
- hold_IO_node = NULL;
- }
- // If we have memory resources copy them and fill in the bridge's
- // memory range registers. Otherwise, fill in the range
- // registers with values that disable them.
- if (mem_node) {
- memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
- mem_node->next = NULL;
- // set Mem base and Limit registers
- temp_word = mem_node->base >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, temp_word);
- temp_word = (mem_node->base + mem_node->length - 1) >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word);
- } else {
- temp_word = 0xFFFF;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, temp_word);
- temp_word = 0x0000;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word);
- kfree(hold_mem_node);
- hold_mem_node = NULL;
- }
- // If we have prefetchable memory resources copy them and
- // fill in the bridge's memory range registers. Otherwise,
- // fill in the range registers with values that disable them.
- if (p_mem_node) {
- memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
- p_mem_node->next = NULL;
- // set Pre Mem base and Limit registers
- temp_word = p_mem_node->base >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, temp_word);
- temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word);
- } else {
- temp_word = 0xFFFF;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, temp_word);
- temp_word = 0x0000;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word);
- kfree(hold_p_mem_node);
- hold_p_mem_node = NULL;
- }
- // Adjust this to compensate for extra adjustment in first loop
- irqs.barber_pole--;
- rc = 0;
- // Here we actually find the devices and configure them
- for (device = 0; (device <= 0x1F) && !rc; device++) {
- irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
- ID = 0xFFFFFFFF;
- pci_read_config_dword_nodev (ctrl->pci_ops, hold_bus_node->base, device, 0, 0x00, &ID);
- if (ID != 0xFFFFFFFF) { // device Present
- // Setup slot structure.
- new_slot = cpqhp_slot_create(hold_bus_node->base);
- if (new_slot == NULL) {
- // Out of memory
- rc = -ENOMEM;
- continue;
- }
- new_slot->bus = hold_bus_node->base;
- new_slot->device = device;
- new_slot->function = 0;
- new_slot->is_a_board = 1;
- new_slot->status = 0;
- rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
- dbg("configure_new_device rc=0x%xn",rc);
- } // End of IF (device in slot?)
- } // End of FOR loop
- if (rc) {
- cpqhp_destroy_resource_list(&temp_resources);
- return_resource(&(resources->bus_head), hold_bus_node);
- return_resource(&(resources->io_head), hold_IO_node);
- return_resource(&(resources->mem_head), hold_mem_node);
- return_resource(&(resources->p_mem_head), hold_p_mem_node);
- return(rc);
- }
- // save the interrupt routing information
- if (resources->irqs) {
- resources->irqs->interrupt[0] = irqs.interrupt[0];
- resources->irqs->interrupt[1] = irqs.interrupt[1];
- resources->irqs->interrupt[2] = irqs.interrupt[2];
- resources->irqs->interrupt[3] = irqs.interrupt[3];
- resources->irqs->valid_INT = irqs.valid_INT;
- } else if (!behind_bridge) {
- // We need to hook up the interrupts here
- for (cloop = 0; cloop < 4; cloop++) {
- if (irqs.valid_INT & (0x01 << cloop)) {
- rc = cpqhp_set_irq(func->bus, func->device,
- 0x0A + cloop, irqs.interrupt[cloop]);
- if (rc) {
- cpqhp_destroy_resource_list (&temp_resources);
- return_resource(&(resources-> bus_head), hold_bus_node);
- return_resource(&(resources-> io_head), hold_IO_node);
- return_resource(&(resources-> mem_head), hold_mem_node);
- return_resource(&(resources-> p_mem_head), hold_p_mem_node);
- return rc;
- }
- }
- } // end of for loop
- }
- // Return unused bus resources
- // First use the temporary node to store information for the board
- if (hold_bus_node && bus_node && temp_resources.bus_head) {
- hold_bus_node->length = bus_node->base - hold_bus_node->base;
- hold_bus_node->next = func->bus_head;
- func->bus_head = hold_bus_node;
- temp_byte = temp_resources.bus_head->base - 1;
- // set subordinate bus
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBORDINATE_BUS, temp_byte);
- if (temp_resources.bus_head->length == 0) {
- kfree(temp_resources.bus_head);
- temp_resources.bus_head = NULL;
- } else {
- return_resource(&(resources->bus_head), temp_resources.bus_head);
- }
- }
- // If we have IO space available and there is some left,
- // return the unused portion
- if (hold_IO_node && temp_resources.io_head) {
- io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
- &hold_IO_node, 0x1000);
- // Check if we were able to split something off
- if (io_node) {
- hold_IO_node->base = io_node->base + io_node->length;
- temp_byte = (hold_IO_node->base) >> 8;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_BASE, temp_byte);
- return_resource(&(resources->io_head), io_node);
- }
- io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
- // Check if we were able to split something off
- if (io_node) {
- // First use the temporary node to store information for the board
- hold_IO_node->length = io_node->base - hold_IO_node->base;
- // If we used any, add it to the board's list
- if (hold_IO_node->length) {
- hold_IO_node->next = func->io_head;
- func->io_head = hold_IO_node;
- temp_byte = (io_node->base - 1) >> 8;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, temp_byte);
- return_resource(&(resources->io_head), io_node);
- } else {
- // it doesn't need any IO
- temp_word = 0x0000;
- pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, temp_word);
- return_resource(&(resources->io_head), io_node);
- kfree(hold_IO_node);
- }
- } else {
- // it used most of the range
- hold_IO_node->next = func->io_head;
- func->io_head = hold_IO_node;
- }
- } else if (hold_IO_node) {
- // it used the whole range
- hold_IO_node->next = func->io_head;
- func->io_head = hold_IO_node;
- }
- // If we have memory space available and there is some left,
- // return the unused portion
- if (hold_mem_node && temp_resources.mem_head) {
- mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
- &hold_mem_node, 0x100000);
- // Check if we were able to split something off
- if (mem_node) {
- hold_mem_node->base = mem_node->base + mem_node->length;
- temp_word = (hold_mem_node->base) >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, temp_word);
- return_resource(&(resources->mem_head), mem_node);
- }
- mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
- // Check if we were able to split something off
- if (mem_node) {
- // First use the temporary node to store information for the board
- hold_mem_node->length = mem_node->base - hold_mem_node->base;
- if (hold_mem_node->length) {
- hold_mem_node->next = func->mem_head;
- func->mem_head = hold_mem_node;
- // configure end address
- temp_word = (mem_node->base - 1) >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word);
- // Return unused resources to the pool
- return_resource(&(resources->mem_head), mem_node);
- } else {
- // it doesn't need any Mem
- temp_word = 0x0000;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word);
- return_resource(&(resources->mem_head), mem_node);
- kfree(hold_mem_node);
- }
- } else {
- // it used most of the range
- hold_mem_node->next = func->mem_head;
- func->mem_head = hold_mem_node;
- }
- } else if (hold_mem_node) {
- // it used the whole range
- hold_mem_node->next = func->mem_head;
- func->mem_head = hold_mem_node;
- }
- // If we have prefetchable memory space available and there is some
- // left at the end, return the unused portion
- if (hold_p_mem_node && temp_resources.p_mem_head) {
- p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
- &hold_p_mem_node, 0x100000);
- // Check if we were able to split something off
- if (p_mem_node) {
- hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
- temp_word = (hold_p_mem_node->base) >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, temp_word);
- return_resource(&(resources->p_mem_head), p_mem_node);
- }
- p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
- // Check if we were able to split something off
- if (p_mem_node) {
- // First use the temporary node to store information for the board
- hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
- // If we used any, add it to the board's list
- if (hold_p_mem_node->length) {
- hold_p_mem_node->next = func->p_mem_head;
- func->p_mem_head = hold_p_mem_node;
- temp_word = (p_mem_node->base - 1) >> 16;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word);
- return_resource(&(resources->p_mem_head), p_mem_node);
- } else {
- // it doesn't need any PMem
- temp_word = 0x0000;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word);
- return_resource(&(resources->p_mem_head), p_mem_node);
- kfree(hold_p_mem_node);
- }
- } else {
- // it used the most of the range
- hold_p_mem_node->next = func->p_mem_head;
- func->p_mem_head = hold_p_mem_node;
- }
- } else if (hold_p_mem_node) {
- // it used the whole range
- hold_p_mem_node->next = func->p_mem_head;
- func->p_mem_head = hold_p_mem_node;
- }
- // We should be configuring an IRQ and the bridge's base address
- // registers if it needs them. Although we have never seen such
- // a device
- // enable card
- command = 0x0157; // = PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, command);
- // set Bridge Control Register
- command = 0x07; // = PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_NO_ISA
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_BRIDGE_CONTROL, command);
- } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
- // Standard device
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0B, &class_code);
- if (class_code == PCI_BASE_CLASS_DISPLAY) {
- // Display (video) adapter (not supported)
- return(DEVICE_TYPE_NOT_SUPPORTED);
- }
- // Figure out IO and memory needs
- for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
- temp_register = 0xFFFFFFFF;
- dbg("CND: bus=%d, device=%d, func=%d, offset=%dn", func->bus, func->device, func->function, cloop);
- rc = pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
- rc = pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &temp_register);
- dbg("CND: base = 0x%xn", temp_register);
- if (temp_register) { // If this register is implemented
- if ((temp_register & 0x03L) == 0x01) {
- // Map IO
- // set base = amount of IO space
- base = temp_register & 0xFFFFFFFC;
- base = ~base + 1;
- dbg("CND: length = 0x%xn", base);
- io_node = get_io_resource(&(resources->io_head), base);
- dbg("Got io_node start = %8.8x, length = %8.8x next (%p)n",
- io_node->base, io_node->length, io_node->next);
- dbg("func (%p) io_head (%p)n", func, func->io_head);
- // allocate the resource to the board
- if (io_node) {
- base = io_node->base;
- io_node->next = func->io_head;
- func->io_head = io_node;
- } else
- return -ENOMEM;
- } else if ((temp_register & 0x0BL) == 0x08) {
- // Map prefetchable memory
- base = temp_register & 0xFFFFFFF0;
- base = ~base + 1;
- dbg("CND: length = 0x%xn", base);
- p_mem_node = get_resource(&(resources->p_mem_head), base);
- // allocate the resource to the board
- if (p_mem_node) {
- base = p_mem_node->base;
- p_mem_node->next = func->p_mem_head;
- func->p_mem_head = p_mem_node;
- } else
- return -ENOMEM;
- } else if ((temp_register & 0x0BL) == 0x00) {
- // Map memory
- base = temp_register & 0xFFFFFFF0;
- base = ~base + 1;
- dbg("CND: length = 0x%xn", base);
- mem_node = get_resource(&(resources->mem_head), base);
- // allocate the resource to the board
- if (mem_node) {
- base = mem_node->base;
- mem_node->next = func->mem_head;
- func->mem_head = mem_node;
- } else
- return -ENOMEM;
- } else if ((temp_register & 0x0BL) == 0x04) {
- // Map memory
- base = temp_register & 0xFFFFFFF0;
- base = ~base + 1;
- dbg("CND: length = 0x%xn", base);
- mem_node = get_resource(&(resources->mem_head), base);
- // allocate the resource to the board
- if (mem_node) {
- base = mem_node->base;
- mem_node->next = func->mem_head;
- func->mem_head = mem_node;
- } else
- return -ENOMEM;
- } else if ((temp_register & 0x0BL) == 0x06) {
- // Those bits are reserved, we can't handle this
- return(1);
- } else {
- // Requesting space below 1M
- return(NOT_ENOUGH_RESOURCES);
- }
- rc = pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, base);
- // Check for 64-bit base
- if ((temp_register & 0x07L) == 0x04) {
- cloop += 4;
- // Upper 32 bits of address always zero on today's systems
- // FIXME this is probably not true on Alpha and ia64???
- base = 0;
- rc = pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, base);
- }
- }
- } // End of base register loop
- // Figure out which interrupt pin this function uses
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_INTERRUPT_PIN, &temp_byte);
- // If this function needs an interrupt and we are behind a bridge
- // and the pin is tied to something that's alread mapped,
- // set this one the same
- if (temp_byte && resources->irqs &&
- (resources->irqs->valid_INT &
- (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
- // We have to share with something already set up
- IRQ = resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03];
- } else {
- // Program IRQ based on card type
- rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0B, &class_code);
- if (class_code == PCI_BASE_CLASS_STORAGE) {
- IRQ = cpqhp_disk_irq;
- } else {
- IRQ = cpqhp_nic_irq;
- }
- }
- // IRQ Line
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_INTERRUPT_LINE, IRQ);
- if (!behind_bridge) {
- rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
- if (rc)
- return(1);
- } else {
- //TBD - this code may also belong in the other clause of this If statement
- resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
- resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
- }
- // Latency Timer
- temp_byte = 0x40;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_LATENCY_TIMER, temp_byte);
- // Cache Line size
- temp_byte = 0x08;
- rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_CACHE_LINE_SIZE, temp_byte);
- // disable ROM base Address
- temp_dword = 0x00L;
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_ROM_ADDRESS, temp_dword);
- // enable card
- temp_word = 0x0157; // = PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR
- rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, temp_word);
- } // End of Not-A-Bridge else
- else {
- // It's some strange type of PCI adapter (Cardbus?)
- return(DEVICE_TYPE_NOT_SUPPORTED);
- }
- func->configured = 1;
- return 0;
- }