jedec.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:27k
- /* JEDEC Flash Interface.
- * This is an older type of interface for self programming flash. It is
- * commonly use in older AMD chips and is obsolete compared with CFI.
- * It is called JEDEC because the JEDEC association distributes the ID codes
- * for the chips.
- *
- * See the AMD flash databook for information on how to operate the interface.
- *
- * This code does not support anything wider than 8 bit flash chips, I am
- * not going to guess how to send commands to them, plus I expect they will
- * all speak CFI..
- *
- * $Id: jedec.c,v 1.13 2002/02/08 15:57:21 rkaiser Exp $
- */
- #include <linux/mtd/jedec.h>
- static struct mtd_info *jedec_probe(struct map_info *);
- static int jedec_probe8(struct map_info *map,unsigned long base,
- struct jedec_private *priv);
- static int jedec_probe16(struct map_info *map,unsigned long base,
- struct jedec_private *priv);
- static int jedec_probe32(struct map_info *map,unsigned long base,
- struct jedec_private *priv);
- static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
- unsigned long len);
- static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
- static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
- size_t *retlen, const u_char *buf);
- static unsigned long my_bank_size;
- /* Listing of parts and sizes. We need this table to learn the sector
- size of the chip and the total length */
- static const struct JEDECTable JEDEC_table[] =
- {{0x013D,"AMD Am29F017D",2*1024*1024,64*1024,MTD_CAP_NORFLASH},
- {0x01AD,"AMD Am29F016",2*1024*1024,64*1024,MTD_CAP_NORFLASH},
- {0x01D5,"AMD Am29F080",1*1024*1024,64*1024,MTD_CAP_NORFLASH},
- {0x01A4,"AMD Am29F040",512*1024,64*1024,MTD_CAP_NORFLASH},
- {0x20E3,"AMD Am29W040B",512*1024,64*1024,MTD_CAP_NORFLASH},
- {0xC2AD,"Macronix MX29F016",2*1024*1024,64*1024,MTD_CAP_NORFLASH},
- {}};
- static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
- static void jedec_sync(struct mtd_info *mtd) {};
- static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
- size_t *retlen, u_char *buf);
- static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
- size_t *retlen, u_char *buf);
- static struct mtd_info *jedec_probe(struct map_info *map);
- static struct mtd_chip_driver jedec_chipdrv = {
- probe: jedec_probe,
- name: "jedec",
- module: THIS_MODULE
- };
- /* Probe entry point */
- static struct mtd_info *jedec_probe(struct map_info *map)
- {
- struct mtd_info *MTD;
- struct jedec_private *priv;
- unsigned long Base;
- unsigned long SectorSize;
- unsigned count;
- unsigned I,Uniq;
- char Part[200];
- memset(&priv,0,sizeof(priv));
- MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
- if (!MTD)
- return NULL;
- memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private));
- priv = (struct jedec_private *)&MTD[1];
-
- my_bank_size = map->size;
- if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
- {
- printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.n");
- kfree(MTD);
- return 0;
- }
-
- for (Base = 0; Base < map->size; Base += my_bank_size)
- {
- // Perhaps zero could designate all tests?
- if (map->buswidth == 0)
- map->buswidth = 1;
-
- if (map->buswidth == 1){
- if (jedec_probe8(map,Base,priv) == 0) {
- printk("did recognize jedec chipn");
- kfree(MTD);
- return 0;
- }
- }
- if (map->buswidth == 2)
- jedec_probe16(map,Base,priv);
- if (map->buswidth == 4)
- jedec_probe32(map,Base,priv);
- }
-
- // Get the biggest sector size
- SectorSize = 0;
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- {
- // printk("priv->chips[%d].jedec is %xn",I,priv->chips[I].jedec);
- // printk("priv->chips[%d].sectorsize is %lxn",I,priv->chips[I].sectorsize);
- if (priv->chips[I].sectorsize > SectorSize)
- SectorSize = priv->chips[I].sectorsize;
- }
-
- // Quickly ensure that the other sector sizes are factors of the largest
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- {
- if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
- {
- printk("mtd: Failed. Device has incompatible mixed sector sizesn");
- kfree(MTD);
- return 0;
- }
- }
-
- /* Generate a part name that includes the number of different chips and
- other configuration information */
- count = 1;
- strncpy(Part,map->name,sizeof(Part)-10);
- Part[sizeof(Part)-11] = 0;
- strcat(Part," ");
- Uniq = 0;
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- {
- const struct JEDECTable *JEDEC;
-
- if (priv->chips[I+1].jedec == priv->chips[I].jedec)
- {
- count++;
- continue;
- }
-
- // Locate the chip in the jedec table
- JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
- if (JEDEC == 0)
- {
- printk("mtd: Internal Error, JEDEC not setn");
- kfree(MTD);
- return 0;
- }
-
- if (Uniq != 0)
- strcat(Part,",");
- Uniq++;
-
- if (count != 1)
- sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
- else
- sprintf(Part+strlen(Part),"%s",JEDEC->name);
- if (strlen(Part) > sizeof(Part)*2/3)
- break;
- count = 1;
- }
- /* Determine if the chips are organized in a linear fashion, or if there
- are empty banks. Note, the last bank does not count here, only the
- first banks are important. Holes on non-bank boundaries can not exist
- due to the way the detection algorithm works. */
- if (priv->size < my_bank_size)
- my_bank_size = priv->size;
- priv->is_banked = 0;
- //printk("priv->size is %x, my_bank_size is %xn",priv->size,my_bank_size);
- //printk("priv->bank_fill[0] is %xn",priv->bank_fill[0]);
- if (!priv->size) {
- printk("priv->size is zeron");
- kfree(MTD);
- return 0;
- }
- if (priv->size/my_bank_size) {
- if (priv->size/my_bank_size == 1) {
- priv->size = my_bank_size;
- }
- else {
- for (I = 0; I != priv->size/my_bank_size - 1; I++)
- {
- if (priv->bank_fill[I] != my_bank_size)
- priv->is_banked = 1;
-
- /* This even could be eliminated, but new de-optimized read/write
- functions have to be written */
- printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lxn",I,priv->bank_fill[I],priv->bank_fill[0]);
- if (priv->bank_fill[I] != priv->bank_fill[0])
- {
- printk("mtd: Failed. Cannot handle unsymmetric bankingn");
- kfree(MTD);
- return 0;
- }
- }
- }
- }
- if (priv->is_banked == 1)
- strcat(Part,", banked");
- // printk("Part: '%s'n",Part);
-
- memset(MTD,0,sizeof(*MTD));
- // strncpy(MTD->name,Part,sizeof(MTD->name));
- // MTD->name[sizeof(MTD->name)-1] = 0;
- MTD->name = map->name;
- MTD->type = MTD_NORFLASH;
- MTD->flags = MTD_CAP_NORFLASH;
- MTD->erasesize = SectorSize*(map->buswidth);
- // printk("MTD->erasesize is %xn",(unsigned int)MTD->erasesize);
- MTD->size = priv->size;
- // printk("MTD->size is %xn",(unsigned int)MTD->size);
- //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
- MTD->erase = flash_erase;
- if (priv->is_banked == 1)
- MTD->read = jedec_read_banked;
- else
- MTD->read = jedec_read;
- MTD->write = flash_write;
- MTD->sync = jedec_sync;
- MTD->priv = map;
- map->fldrv_priv = priv;
- map->fldrv = &jedec_chipdrv;
- MOD_INC_USE_COUNT;
- return MTD;
- }
- /* Helper for the JEDEC function, JEDEC numbers all have odd parity */
- static int checkparity(u_char C)
- {
- u_char parity = 0;
- while (C != 0)
- {
- parity ^= C & 1;
- C >>= 1;
- }
- return parity == 1;
- }
- /* Take an array of JEDEC numbers that represent interleved flash chips
- and process them. Check to make sure they are good JEDEC numbers, look
- them up and then add them to the chip list */
- static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
- unsigned long base,struct jedec_private *priv)
- {
- unsigned I,J;
- unsigned long Size;
- unsigned long SectorSize;
- const struct JEDECTable *JEDEC;
- // Test #2 JEDEC numbers exhibit odd parity
- for (I = 0; I != Count; I++)
- {
- if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
- return 0;
- }
-
- // Finally, just make sure all the chip sizes are the same
- JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
-
- if (JEDEC == 0)
- {
- printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%xn",Mfg[0],Mfg[1]);
- return 0;
- }
-
- Size = JEDEC->size;
- SectorSize = JEDEC->sectorsize;
- for (I = 0; I != Count; I++)
- {
- JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
- if (JEDEC == 0)
- {
- printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%xn",Mfg[0],Mfg[1]);
- return 0;
- }
- if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
- {
- printk("mtd: Failed. Interleved flash does not have matching characteristicsn");
- return 0;
- }
- }
- // Load the Chips
- for (I = 0; I != MAX_JEDEC_CHIPS; I++)
- {
- if (priv->chips[I].jedec == 0)
- break;
- }
- if (I + Count > MAX_JEDEC_CHIPS)
- {
- printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPSn");
- return 0;
- }
-
- // Add them to the table
- for (J = 0; J != Count; J++)
- {
- unsigned long Bank;
-
- JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
- priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
- priv->chips[I].size = JEDEC->size;
- priv->chips[I].sectorsize = JEDEC->sectorsize;
- priv->chips[I].base = base + J;
- priv->chips[I].datashift = J*8;
- priv->chips[I].capabilities = JEDEC->capabilities;
- priv->chips[I].offset = priv->size + J;
- // log2 n :|
- priv->chips[I].addrshift = 0;
- for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
-
- // Determine how filled this bank is.
- Bank = base & (~(my_bank_size-1));
- if (priv->bank_fill[Bank/my_bank_size] < base +
- (JEDEC->size << priv->chips[I].addrshift) - Bank)
- priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
- I++;
- }
- priv->size += priv->chips[I-1].size*Count;
-
- return priv->chips[I-1].size;
- }
- /* Lookup the chip information from the JEDEC ID table. */
- static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
- {
- __u16 Id = (mfr << 8) | id;
- unsigned long I = 0;
- for (I = 0; JEDEC_table[I].jedec != 0; I++)
- if (JEDEC_table[I].jedec == Id)
- return JEDEC_table + I;
- return 0;
- }
- // Look for flash using an 8 bit bus interface
- static int jedec_probe8(struct map_info *map,unsigned long base,
- struct jedec_private *priv)
- {
- #define flread(x) map->read8(map,base+x)
- #define flwrite(v,x) map->write8(map,v,base+x)
- const unsigned long AutoSel1 = 0xAA;
- const unsigned long AutoSel2 = 0x55;
- const unsigned long AutoSel3 = 0x90;
- const unsigned long Reset = 0xF0;
- __u32 OldVal;
- __u8 Mfg[1];
- __u8 Id[1];
- unsigned I;
- unsigned long Size;
- // Wait for any write/erase operation to settle
- OldVal = flread(base);
- for (I = 0; OldVal != flread(base) && I < 10000; I++)
- OldVal = flread(base);
-
- // Reset the chip
- flwrite(Reset,0x555);
-
- // Send the sequence
- flwrite(AutoSel1,0x555);
- flwrite(AutoSel2,0x2AA);
- flwrite(AutoSel3,0x555);
-
- // Get the JEDEC numbers
- Mfg[0] = flread(0);
- Id[0] = flread(1);
- // printk("Mfg is %x, Id is %xn",Mfg[0],Id[0]);
-
- Size = handle_jedecs(map,Mfg,Id,1,base,priv);
- // printk("handle_jedecs Size is %xn",(unsigned int)Size);
- if (Size == 0)
- {
- flwrite(Reset,0x555);
- return 0;
- }
-
- // Reset.
- flwrite(Reset,0x555);
-
- return 1;
-
- #undef flread
- #undef flwrite
- }
- // Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
- static int jedec_probe16(struct map_info *map,unsigned long base,
- struct jedec_private *priv)
- {
- return 0;
- }
- // Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
- static int jedec_probe32(struct map_info *map,unsigned long base,
- struct jedec_private *priv)
- {
- #define flread(x) map->read32(map,base+((x)<<2))
- #define flwrite(v,x) map->write32(map,v,base+((x)<<2))
- const unsigned long AutoSel1 = 0xAAAAAAAA;
- const unsigned long AutoSel2 = 0x55555555;
- const unsigned long AutoSel3 = 0x90909090;
- const unsigned long Reset = 0xF0F0F0F0;
- __u32 OldVal;
- __u8 Mfg[4];
- __u8 Id[4];
- unsigned I;
- unsigned long Size;
- // Wait for any write/erase operation to settle
- OldVal = flread(base);
- for (I = 0; OldVal != flread(base) && I < 10000; I++)
- OldVal = flread(base);
-
- // Reset the chip
- flwrite(Reset,0x555);
-
- // Send the sequence
- flwrite(AutoSel1,0x555);
- flwrite(AutoSel2,0x2AA);
- flwrite(AutoSel3,0x555);
-
- // Test #1, JEDEC numbers are readable from 0x??00/0x??01
- if (flread(0) != flread(0x100) ||
- flread(1) != flread(0x101))
- {
- flwrite(Reset,0x555);
- return 0;
- }
- // Split up the JEDEC numbers
- OldVal = flread(0);
- for (I = 0; I != 4; I++)
- Mfg[I] = (OldVal >> (I*8));
- OldVal = flread(1);
- for (I = 0; I != 4; I++)
- Id[I] = (OldVal >> (I*8));
-
- Size = handle_jedecs(map,Mfg,Id,4,base,priv);
- if (Size == 0)
- {
- flwrite(Reset,0x555);
- return 0;
- }
-
- /* Check if there is address wrap around within a single bank, if this
- returns JEDEC numbers then we assume that it is wrap around. Notice
- we call this routine with the JEDEC return still enabled, if two or
- more flashes have a truncated address space the probe test will still
- work */
- if (base + Size+0x555 < map->size &&
- base + Size+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
- {
- if (flread(base+Size) != flread(base+Size + 0x100) ||
- flread(base+Size + 1) != flread(base+Size + 0x101))
- {
- jedec_probe32(map,base+Size,priv);
- }
- }
- // Reset.
- flwrite(0xF0F0F0F0,0x555);
-
- return 1;
-
- #undef flread
- #undef flwrite
- }
- /* Linear read. */
- static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
- size_t *retlen, u_char *buf)
- {
- struct map_info *map = (struct map_info *)mtd->priv;
-
- map->copy_from(map, buf, from, len);
- *retlen = len;
- return 0;
- }
- /* Banked read. Take special care to jump past the holes in the bank
- mapping. This version assumes symetry in the holes.. */
- static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
- size_t *retlen, u_char *buf)
- {
- struct map_info *map = (struct map_info *)mtd->priv;
- struct jedec_private *priv = (struct jedec_private *)map->fldrv_priv;
- *retlen = 0;
- while (len > 0)
- {
- // Determine what bank and offset into that bank the first byte is
- unsigned long bank = from & (~(priv->bank_fill[0]-1));
- unsigned long offset = from & (priv->bank_fill[0]-1);
- unsigned long get = len;
- if (priv->bank_fill[0] - offset < len)
- get = priv->bank_fill[0] - offset;
- bank /= priv->bank_fill[0];
- map->copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
-
- len -= get;
- *retlen += get;
- from += get;
- }
- return 0;
- }
- /* Pass the flags value that the flash return before it re-entered read
- mode. */
- static void jedec_flash_failed(unsigned char code)
- {
- /* Bit 5 being high indicates that there was an internal device
- failure, erasure time limits exceeded or something */
- if ((code & (1 << 5)) != 0)
- {
- printk("mtd: Internal Flash failuren");
- return;
- }
- printk("mtd: Programming didn't taken");
- }
- /* This uses the erasure function described in the AMD Flash Handbook,
- it will work for flashes with a fixed sector size only. Flashes with
- a selection of sector sizes (ie the AMD Am29F800B) will need a different
- routine. This routine tries to parallize erasing multiple chips/sectors
- where possible */
- static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
- {
- // Does IO to the currently selected chip
- #define flread(x) map->read8(map,chip->base+((x)<<chip->addrshift))
- #define flwrite(v,x) map->write8(map,v,chip->base+((x)<<chip->addrshift))
-
- unsigned long Time = 0;
- unsigned long NoTime = 0;
- unsigned long start = instr->addr, len = instr->len;
- unsigned int I;
- struct map_info *map = (struct map_info *)mtd->priv;
- struct jedec_private *priv = (struct jedec_private *)map->fldrv_priv;
- // Verify the arguments..
- if (start + len > mtd->size ||
- (start % mtd->erasesize) != 0 ||
- (len % mtd->erasesize) != 0 ||
- (len/mtd->erasesize) == 0)
- return -EINVAL;
-
- jedec_flash_chip_scan(priv,start,len);
- // Start the erase sequence on each chip
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- {
- unsigned long off;
- struct jedec_flash_chip *chip = priv->chips + I;
-
- if (chip->length == 0)
- continue;
-
- if (chip->start + chip->length > chip->size)
- {
- printk("DIEn");
- return -EIO;
- }
-
- flwrite(0xF0,chip->start + 0x555);
- flwrite(0xAA,chip->start + 0x555);
- flwrite(0x55,chip->start + 0x2AA);
- flwrite(0x80,chip->start + 0x555);
- flwrite(0xAA,chip->start + 0x555);
- flwrite(0x55,chip->start + 0x2AA);
- /* Once we start selecting the erase sectors the delay between each
- command must not exceed 50us or it will immediately start erasing
- and ignore the other sectors */
- for (off = 0; off < len; off += chip->sectorsize)
- {
- // Check to make sure we didn't timeout
- flwrite(0x30,chip->start + off);
- if (off == 0)
- continue;
- if ((flread(chip->start + off) & (1 << 3)) != 0)
- {
- printk("mtd: Ack! We timed out the erase timer!n");
- return -EIO;
- }
- }
- }
- /* We could split this into a timer routine and return early, performing
- background erasure.. Maybe later if the need warrents */
- /* Poll the flash for erasure completion, specs say this can take as long
- as 480 seconds to do all the sectors (for a 2 meg flash).
- Erasure time is dependant on chip age, temp and wear.. */
-
- /* This being a generic routine assumes a 32 bit bus. It does read32s
- and bundles interleved chips into the same grouping. This will work
- for all bus widths */
- Time = 0;
- NoTime = 0;
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- {
- struct jedec_flash_chip *chip = priv->chips + I;
- unsigned long off = 0;
- unsigned todo[4] = {0,0,0,0};
- unsigned todo_left = 0;
- unsigned J;
-
- if (chip->length == 0)
- continue;
- /* Find all chips in this data line, realistically this is all
- or nothing up to the interleve count */
- for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
- {
- if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
- (chip->base & (~((1<<chip->addrshift)-1))))
- {
- todo_left++;
- todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
- }
- }
- /* printk("todo: %x %x %x %xn",(short)todo[0],(short)todo[1],
- (short)todo[2],(short)todo[3]);
- */
- while (1)
- {
- __u32 Last[4];
- unsigned long Count = 0;
-
- /* During erase bit 7 is held low and bit 6 toggles, we watch this,
- should it stop toggling or go high then the erase is completed,
- or this is not really flash ;> */
- switch (map->buswidth) {
- case 1:
- Last[0] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
- Last[1] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
- Last[2] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
- break;
- case 2:
- Last[0] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
- Last[1] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
- Last[2] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
- break;
- case 3:
- Last[0] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
- Last[1] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
- Last[2] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
- break;
- }
- Count = 3;
- while (todo_left != 0)
- {
- for (J = 0; J != 4; J++)
- {
- __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
- __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
- __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
- if (todo[J] == 0)
- continue;
-
- if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
- {
- // printk("Check %x %x %xn",(short)J,(short)Byte1,(short)Byte2);
- continue;
- }
-
- if (Byte1 == Byte2)
- {
- jedec_flash_failed(Byte3);
- return -EIO;
- }
-
- todo[J] = 0;
- todo_left--;
- }
-
- /* if (NoTime == 0)
- Time += HZ/10 - schedule_timeout(HZ/10);*/
- NoTime = 0;
- switch (map->buswidth) {
- case 1:
- Last[Count % 4] = map->read8(map,(chip->base >> chip->addrshift) + chip->start + off);
- break;
- case 2:
- Last[Count % 4] = map->read16(map,(chip->base >> chip->addrshift) + chip->start + off);
- break;
- case 4:
- Last[Count % 4] = map->read32(map,(chip->base >> chip->addrshift) + chip->start + off);
- break;
- }
- Count++;
-
- /* // Count time, max of 15s per sector (according to AMD)
- if (Time > 15*len/mtd->erasesize*HZ)
- {
- printk("mtd: Flash Erase Timed outn");
- return -EIO;
- } */
- }
-
- // Skip to the next chip if we used chip erase
- if (chip->length == chip->size)
- off = chip->size;
- else
- off += chip->sectorsize;
-
- if (off >= chip->length)
- break;
- NoTime = 1;
- }
-
- for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
- {
- if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
- (chip->base & (~((1<<chip->addrshift)-1))))
- priv->chips[J].length = 0;
- }
- }
-
- //printk("donen");
- instr->state = MTD_ERASE_DONE;
- if (instr->callback)
- instr->callback(instr);
- return 0;
-
- #undef flread
- #undef flwrite
- }
- /* This is the simple flash writing function. It writes to every byte, in
- sequence. It takes care of how to properly address the flash if
- the flash is interleved. It can only be used if all the chips in the
- array are identical!*/
- static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
- size_t *retlen, const u_char *buf)
- {
- /* Does IO to the currently selected chip. It takes the bank addressing
- base (which is divisable by the chip size) adds the necesary lower bits
- of addrshift (interleve index) and then adds the control register index. */
- #define flread(x) map->read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
- #define flwrite(v,x) map->write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
-
- struct map_info *map = (struct map_info *)mtd->priv;
- struct jedec_private *priv = (struct jedec_private *)map->fldrv_priv;
- unsigned long base;
- unsigned long off;
- size_t save_len = len;
-
- if (start + len > mtd->size)
- return -EIO;
-
- //printk("Here");
-
- //printk("flash_write: start is %x, len is %xn",start,(unsigned long)len);
- while (len != 0)
- {
- struct jedec_flash_chip *chip = priv->chips;
- unsigned long bank;
- unsigned long boffset;
-
- // Compute the base of the flash.
- off = ((unsigned long)start) % (chip->size << chip->addrshift);
- base = start - off;
- // Perform banked addressing translation.
- bank = base & (~(priv->bank_fill[0]-1));
- boffset = base & (priv->bank_fill[0]-1);
- bank = (bank/priv->bank_fill[0])*my_bank_size;
- base = bank + boffset;
-
- // printk("Flasing %X %X %Xn",base,chip->size,len);
- // printk("off is %x, compare with %xn",off,chip->size << chip->addrshift);
-
- // Loop over this page
- for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
- {
- unsigned char oldbyte = map->read8(map,base+off);
- unsigned char Last[4];
- unsigned long Count = 0;
- if (oldbyte == *buf) {
- // printk("oldbyte and *buf is %x,len is %xn",oldbyte,len);
- continue;
- }
- if (((~oldbyte) & *buf) != 0)
- printk("mtd: warn: Trying to set a 0 to a 1n");
-
- // Write
- flwrite(0xAA,0x555);
- flwrite(0x55,0x2AA);
- flwrite(0xA0,0x555);
- map->write8(map,*buf,base + off);
- Last[0] = map->read8(map,base + off);
- Last[1] = map->read8(map,base + off);
- Last[2] = map->read8(map,base + off);
-
- /* Wait for the flash to finish the operation. We store the last 4
- status bytes that have been retrieved so we can determine why
- it failed. The toggle bits keep toggling when there is a
- failure */
- for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
- Count < 10000; Count++)
- Last[Count % 4] = map->read8(map,base + off);
- if (Last[(Count - 1) % 4] != *buf)
- {
- jedec_flash_failed(Last[(Count - 3) % 4]);
- return -EIO;
- }
- }
- }
- *retlen = save_len;
- return 0;
- }
- /* This is used to enhance the speed of the erase routine,
- when things are being done to multiple chips it is possible to
- parallize the operations, particularly full memory erases of multi
- chip memories benifit */
- static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
- unsigned long len)
- {
- unsigned int I;
- // Zero the records
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- priv->chips[I].start = priv->chips[I].length = 0;
-
- // Intersect the region with each chip
- for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
- {
- struct jedec_flash_chip *chip = priv->chips + I;
- unsigned long ByteStart;
- unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
-
- // End is before this chip or the start is after it
- if (start+len < chip->offset ||
- ChipEndByte - (1 << chip->addrshift) < start)
- continue;
-
- if (start < chip->offset)
- {
- ByteStart = chip->offset;
- chip->start = 0;
- }
- else
- {
- chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
- ByteStart = start;
- }
- if (start + len >= ChipEndByte)
- chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
- else
- chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
- }
- }
- int __init jedec_init(void)
- {
- register_mtd_chip_driver(&jedec_chipdrv);
- return 0;
- }
- static void __exit jedec_exit(void)
- {
- unregister_mtd_chip_driver(&jedec_chipdrv);
- }
- module_init(jedec_init);
- module_exit(jedec_exit);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
- MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");