nftlmount.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:25k
源码类别:

嵌入式Linux

开发平台:

Unix_Linux

  1. /* 
  2.  * NFTL mount code with extensive checks
  3.  *
  4.  * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 
  5.  * Copyright (C) 2000 Netgem S.A.
  6.  *
  7.  * $Id: nftlmount.c,v 1.28 2002/03/13 07:31:25 dwmw2 Exp $
  8.  *
  9.  * This program is free software; you can redistribute it and/or modify
  10.  * it under the terms of the GNU General Public License as published by
  11.  * the Free Software Foundation; either version 2 of the License, or
  12.  * (at your option) any later version.
  13.  *
  14.  * This program is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17.  * GNU General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU General Public License
  20.  * along with this program; if not, write to the Free Software
  21.  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22.  */
  23. #define __NO_VERSION__
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <asm/errno.h>
  27. #include <asm/io.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/miscdevice.h>
  30. #include <linux/pci.h>
  31. #include <linux/delay.h>
  32. #include <linux/slab.h>
  33. #include <linux/sched.h>
  34. #include <linux/init.h>
  35. #include <linux/mtd/mtd.h>
  36. #include <linux/mtd/nftl.h>
  37. #include <linux/mtd/compatmac.h>
  38. #define SECTORSIZE 512
  39. char nftlmountrev[]="$Revision: 1.28 $";
  40. /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
  41.  * various device information of the NFTL partition and Bad Unit Table. Update
  42.  * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
  43.  * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
  44.  */
  45. static int find_boot_record(struct NFTLrecord *nftl)
  46. {
  47. struct nftl_uci1 h1;
  48. struct nftl_oob oob;
  49. unsigned int block, boot_record_count = 0;
  50. int retlen;
  51. u8 buf[SECTORSIZE];
  52. struct NFTLMediaHeader *mh = &nftl->MediaHdr;
  53. unsigned int i;
  54.         /* Assume logical EraseSize == physical erasesize for starting the scan. 
  55.    We'll sort it out later if we find a MediaHeader which says otherwise */
  56. nftl->EraseSize = nftl->mtd->erasesize;
  57.         nftl->nb_blocks = nftl->mtd->size / nftl->EraseSize;
  58. nftl->MediaUnit = BLOCK_NIL;
  59. nftl->SpareMediaUnit = BLOCK_NIL;
  60. /* search for a valid boot record */
  61. for (block = 0; block < nftl->nb_blocks; block++) {
  62. int ret;
  63. /* Check for ANAND header first. Then can whinge if it's found but later
  64.    checks fail */
  65. if ((ret = MTD_READ(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, &retlen, buf))) {
  66. static int warncount = 5;
  67. if (warncount) {
  68. printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %dn",
  69.        block * nftl->EraseSize, nftl->mtd->index, ret);
  70. if (!--warncount)
  71. printk(KERN_WARNING "Further failures for this block will not be printedn");
  72. }
  73. continue;
  74. }
  75. if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
  76. /* ANAND not found. Continue */
  77. #if 0
  78. printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%dn", 
  79.        block * nftl->EraseSize, nftl->mtd->index);
  80. #endif
  81. continue;
  82. }
  83. /* To be safer with BIOS, also use erase mark as discriminant */
  84. if ((ret = MTD_READOOB(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
  85. 8, &retlen, (char *)&h1) < 0)) {
  86. printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)n",
  87.        block * nftl->EraseSize, nftl->mtd->index, ret);
  88. continue;
  89. }
  90. #if 0 /* Some people seem to have devices without ECC or erase marks
  91.  on the Media Header blocks. There are enough other sanity
  92.  checks in here that we can probably do without it.
  93.       */
  94. if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
  95. printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)n",
  96.        block * nftl->EraseSize, nftl->mtd->index, 
  97.        le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
  98. continue;
  99. }
  100. /* Finally reread to check ECC */
  101. if ((ret = MTD_READECC(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
  102. &retlen, buf, (char *)&oob) < 0)) {
  103. printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)n",
  104.        block * nftl->EraseSize, nftl->mtd->index, ret);
  105. continue;
  106. }
  107. /* Paranoia. Check the ANAND header is still there after the ECC read */
  108. if (memcmp(buf, "ANAND", 6)) {
  109. printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!n",
  110.        block * nftl->EraseSize, nftl->mtd->index);
  111. printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02xn",
  112.        buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
  113. continue;
  114. }
  115. #endif
  116. /* OK, we like it. */
  117. if (boot_record_count) {
  118. /* We've already processed one. So we just check if
  119.    this one is the same as the first one we found */
  120. if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
  121. printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.n",
  122.        nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
  123. /* if (debug) Print both side by side */
  124. return -1;
  125. }
  126. if (boot_record_count == 1)
  127. nftl->SpareMediaUnit = block;
  128. /* Mark this boot record (NFTL MediaHeader) block as reserved */
  129. nftl->ReplUnitTable[block] = BLOCK_RESERVED;
  130. boot_record_count++;
  131. continue;
  132. }
  133. /* This is the first we've seen. Copy the media header structure into place */
  134. memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
  135. /* Do some sanity checks on it */
  136. if (mh->UnitSizeFactor == 0) {
  137. printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...n");
  138. } else if (mh->UnitSizeFactor < 0xfc) {
  139. printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02xn",
  140.        mh->UnitSizeFactor);
  141. return -1;
  142. } else if (mh->UnitSizeFactor != 0xff) {
  143. printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimentaln",
  144.        mh->UnitSizeFactor);
  145. nftl->EraseSize = nftl->mtd->erasesize << (0xff - mh->UnitSizeFactor);
  146. nftl->nb_blocks = nftl->mtd->size / nftl->EraseSize;
  147. }
  148. nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
  149. if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
  150. printk(KERN_NOTICE "NFTL Media Header sanity check failed:n");
  151. printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)n", 
  152.        nftl->nb_boot_blocks, nftl->nb_blocks);
  153. return -1;
  154. }
  155. nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
  156. if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
  157. printk(KERN_NOTICE "NFTL Media Header sanity check failed:n");
  158. printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2n",
  159.        nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
  160. return -1;
  161. }
  162. nftl->nr_sects  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
  163. /* If we're not using the last sectors in the device for some reason,
  164.    reduce nb_blocks accordingly so we forget they're there */
  165. nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
  166. /* XXX: will be suppressed */
  167. nftl->lastEUN = nftl->nb_blocks - 1;
  168. /* memory alloc */
  169. nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
  170. if (!nftl->EUNtable) {
  171. printk(KERN_NOTICE "NFTL: allocation of EUNtable failedn");
  172. return -ENOMEM;
  173. }
  174. nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
  175. if (!nftl->ReplUnitTable) {
  176. kfree(nftl->EUNtable);
  177. printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failedn");
  178. return -ENOMEM;
  179. }
  180. /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
  181. for (i = 0; i < nftl->nb_boot_blocks; i++)
  182. nftl->ReplUnitTable[i] = BLOCK_RESERVED;
  183. /* mark all remaining blocks as potentially containing data */
  184. for (; i < nftl->nb_blocks; i++) { 
  185. nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
  186. }
  187. /* Mark this boot record (NFTL MediaHeader) block as reserved */
  188. nftl->ReplUnitTable[block] = BLOCK_RESERVED;
  189. /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
  190. for (i = 0; i < nftl->nb_blocks; i++) {
  191. if ((i & (SECTORSIZE - 1)) == 0) {
  192. /* read one sector for every SECTORSIZE of blocks */
  193. if ((ret = MTD_READECC(nftl->mtd, block * nftl->EraseSize +
  194.        i + SECTORSIZE, SECTORSIZE,
  195.        &retlen, buf, (char *)&oob)) < 0) {
  196. printk(KERN_NOTICE "Read of bad sector table failed (err %d)n",
  197.        ret);
  198. kfree(nftl->ReplUnitTable);
  199. kfree(nftl->EUNtable);
  200. return -1;
  201. }
  202. }
  203. /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
  204. if (buf[i & (SECTORSIZE - 1)] != 0xff)
  205. nftl->ReplUnitTable[i] = BLOCK_RESERVED;
  206. }
  207. nftl->MediaUnit = block;
  208. boot_record_count++;
  209. } /* foreach (block) */
  210. return boot_record_count?0:-1;
  211. }
  212. static int memcmpb(void *a, int c, int n)
  213. {
  214. int i;
  215. for (i = 0; i < n; i++) {
  216. if (c != ((unsigned char *)a)[i])
  217. return 1;
  218. }
  219. return 0;
  220. }
  221. /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
  222. static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, 
  223.       int check_oob)
  224. {
  225. int i, retlen;
  226. u8 buf[SECTORSIZE];
  227. for (i = 0; i < len; i += SECTORSIZE) {
  228. /* we want to read the sector without ECC check here since a free
  229.    sector does not have ECC syndrome on it yet */
  230. if (MTD_READ(nftl->mtd, address, SECTORSIZE, &retlen, buf) < 0)
  231. return -1;
  232. if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
  233. return -1;
  234. if (check_oob) {
  235. if (MTD_READOOB(nftl->mtd, address, nftl->mtd->oobsize,
  236. &retlen, buf) < 0)
  237. return -1;
  238. if (memcmpb(buf, 0xff, nftl->mtd->oobsize) != 0)
  239. return -1;
  240. }
  241. address += SECTORSIZE;
  242. }
  243. return 0;
  244. }
  245. /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
  246.  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
  247.  *
  248.  * Return: 0 when succeed, -1 on error.
  249.  *
  250.  *  ToDo: 1. Is it neceressary to check_free_sector after erasing ?? 
  251.  *        2. UnitSizeFactor != 0xFF
  252.  */
  253. int NFTL_formatblock(struct NFTLrecord *nftl, int block)
  254. {
  255. int retlen;
  256. unsigned int nb_erases, erase_mark;
  257. struct nftl_uci1 uci;
  258. struct erase_info *instr = &nftl->instr;
  259. /* Read the Unit Control Information #1 for Wear-Leveling */
  260. if (MTD_READOOB(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
  261. 8, &retlen, (char *)&uci) < 0)
  262. goto default_uci1;
  263. erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
  264. if (erase_mark != ERASE_MARK) {
  265. default_uci1:
  266. uci.EraseMark = cpu_to_le16(ERASE_MARK);
  267. uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
  268. uci.WearInfo = cpu_to_le32(0);
  269. }
  270. memset(instr, 0, sizeof(struct erase_info));
  271. /* XXX: use async erase interface, XXX: test return code */
  272. instr->addr = block * nftl->EraseSize;
  273. instr->len = nftl->EraseSize;
  274. MTD_ERASE(nftl->mtd, instr);
  275. if (instr->state == MTD_ERASE_FAILED) {
  276. /* could not format, FixMe: We should update the BadUnitTable 
  277.    both in memory and on disk */
  278. printk("Error while formatting block %dn", block);
  279. return -1;
  280. } else {
  281. /* increase and write Wear-Leveling info */
  282. nb_erases = le32_to_cpu(uci.WearInfo);
  283. nb_erases++;
  284. /* wrap (almost impossible with current flashs) or free block */
  285. if (nb_erases == 0)
  286. nb_erases = 1;
  287. /* check the "freeness" of Erase Unit before updating metadata
  288.  * FixMe:  is this check really necessary ? since we have check the
  289.  *         return code after the erase operation. */
  290. if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
  291. return -1;
  292. uci.WearInfo = le32_to_cpu(nb_erases);
  293. if (MTD_WRITEOOB(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
  294.  &retlen, (char *)&uci) < 0)
  295. return -1;
  296. return 0;
  297. }
  298. }
  299. /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
  300.  * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
  301.  * was being folded when NFTL was interrupted.
  302.  *
  303.  * The check_free_sectors in this function is neceressary. There is a possible
  304.  * situation that after writing the Data area, the Block Control Information is
  305.  * not updated according (due to power failure or something) which leaves the block
  306.  * in an umconsistent state. So we have to check if a block is really FREE in this
  307.  * case. */
  308. static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
  309. {
  310. unsigned int block, i, status;
  311. struct nftl_bci bci;
  312. int sectors_per_block, retlen;
  313. sectors_per_block = nftl->EraseSize / SECTORSIZE;
  314. block = first_block;
  315. for (;;) {
  316. for (i = 0; i < sectors_per_block; i++) {
  317. if (MTD_READOOB(nftl->mtd, block * nftl->EraseSize + i * SECTORSIZE,
  318. 8, &retlen, (char *)&bci) < 0)
  319. status = SECTOR_IGNORE;
  320. else
  321. status = bci.Status | bci.Status1;
  322. switch(status) {
  323. case SECTOR_FREE:
  324. /* verify that the sector is really free. If not, mark
  325.    as ignore */
  326. if (memcmpb(&bci, 0xff, 8) != 0 ||
  327.     check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, 
  328.        SECTORSIZE, 0) != 0) {
  329. printk("Incorrect free sector %d in block %d: "
  330.        "marking it as ignoredn",
  331.        i, block);
  332. /* sector not free actually : mark it as SECTOR_IGNORE  */
  333. bci.Status = SECTOR_IGNORE;
  334. bci.Status1 = SECTOR_IGNORE;
  335. MTD_WRITEOOB(nftl->mtd,
  336.      block * nftl->EraseSize + i * SECTORSIZE,
  337.      8, &retlen, (char *)&bci);
  338. }
  339. break;
  340. default:
  341. break;
  342. }
  343. }
  344. /* proceed to next Erase Unit on the chain */
  345. block = nftl->ReplUnitTable[block];
  346. if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
  347. printk("incorrect ReplUnitTable[] : %dn", block);
  348. if (block == BLOCK_NIL || block >= nftl->nb_blocks)
  349. break;
  350. }
  351. }
  352. /* calc_chain_lenght: Walk through a Virtual Unit Chain and estimate chain length */
  353. static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
  354. {
  355. unsigned int length = 0, block = first_block;
  356. for (;;) {
  357. length++;
  358. /* avoid infinite loops, although this is guaranted not to
  359.    happen because of the previous checks */
  360. if (length >= nftl->nb_blocks) {
  361. printk("nftl: length too long %d !n", length);
  362. break;
  363. }
  364. block = nftl->ReplUnitTable[block];
  365. if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
  366. printk("incorrect ReplUnitTable[] : %dn", block);
  367. if (block == BLOCK_NIL || block >= nftl->nb_blocks)
  368. break;
  369. }
  370. return length;
  371. }
  372. /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
  373.  * Virtual Unit Chain, i.e. all the units are disconnected.
  374.  *
  375.  * It is not stricly correct to begin from the first block of the chain because
  376.  * if we stop the code, we may see again a valid chain if there was a first_block
  377.  * flag in a block inside it. But is it really a problem ?
  378.  *
  379.  * FixMe: Figure out what the last statesment means. What if power failure when we are
  380.  * in the for (;;) loop formatting blocks ??
  381.  */
  382. static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
  383. {
  384. unsigned int block = first_block, block1;
  385. printk("Formatting chain at block %dn", first_block);
  386. for (;;) {
  387. block1 = nftl->ReplUnitTable[block];
  388. printk("Formatting block %dn", block);
  389. if (NFTL_formatblock(nftl, block) < 0) {
  390. /* cannot format !!!! Mark it as Bad Unit,
  391.    FixMe: update the BadUnitTable on disk */
  392. nftl->ReplUnitTable[block] = BLOCK_RESERVED;
  393. } else {
  394. nftl->ReplUnitTable[block] = BLOCK_FREE;
  395. }
  396. /* goto next block on the chain */
  397. block = block1;
  398. if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
  399. printk("incorrect ReplUnitTable[] : %dn", block);
  400. if (block == BLOCK_NIL || block >= nftl->nb_blocks)
  401. break;
  402. }
  403. }
  404. /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
  405.  * totally free (only 0xff).
  406.  *
  407.  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
  408.  * following critia:
  409.  * 1. */
  410. static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
  411. {
  412. struct nftl_uci1 h1;
  413. unsigned int erase_mark;
  414. int retlen;
  415. /* check erase mark. */
  416. if (MTD_READOOB(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, 
  417. &retlen, (char *)&h1) < 0)
  418. return -1;
  419. erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
  420. if (erase_mark != ERASE_MARK) {
  421. /* if no erase mark, the block must be totally free. This is
  422.    possible in two cases : empty filsystem or interrupted erase (very unlikely) */
  423. if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
  424. return -1;
  425. /* free block : write erase mark */
  426. h1.EraseMark = cpu_to_le16(ERASE_MARK);
  427. h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
  428. h1.WearInfo = cpu_to_le32(0);
  429. if (MTD_WRITEOOB(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, 
  430.  &retlen, (char *)&h1) < 0)
  431. return -1;
  432. } else {
  433. #if 0
  434. /* if erase mark present, need to skip it when doing check */
  435. for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
  436. /* check free sector */
  437. if (check_free_sectors (nftl, block * nftl->EraseSize + i,
  438. SECTORSIZE, 0) != 0)
  439. return -1;
  440. if (MTD_READOOB(nftl->mtd, block * nftl->EraseSize + i,
  441. 16, &retlen, buf) < 0)
  442. return -1;
  443. if (i == SECTORSIZE) {
  444. /* skip erase mark */
  445. if (memcmpb(buf, 0xff, 8))
  446. return -1;
  447. } else {
  448. if (memcmpb(buf, 0xff, 16))
  449. return -1;
  450. }
  451. }
  452. #endif
  453. }
  454. return 0;
  455. }
  456. /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
  457.  * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
  458.  * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
  459.  * for some reason. A clean up/check of the VUC is neceressary in this case.
  460.  *
  461.  * WARNING: return 0 if read error
  462.  */
  463. static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
  464. {
  465. struct nftl_uci2 uci;
  466. int retlen;
  467. if (MTD_READOOB(nftl->mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
  468. 8, &retlen, (char *)&uci) < 0)
  469. return 0;
  470. return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
  471. }
  472. int NFTL_mount(struct NFTLrecord *s)
  473. {
  474. int i;
  475. unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
  476. unsigned int block, first_block, is_first_block;
  477. int chain_length, do_format_chain;
  478. struct nftl_uci0 h0;
  479. struct nftl_uci1 h1;
  480. int retlen;
  481. /* search for NFTL MediaHeader and Spare NFTL Media Header */
  482. if (find_boot_record(s) < 0) {
  483. printk("Could not find valid boot recordn");
  484. return -1;
  485. }
  486. /* init the logical to physical table */
  487. for (i = 0; i < s->nb_blocks; i++) {
  488. s->EUNtable[i] = BLOCK_NIL;
  489. }
  490. /* first pass : explore each block chain */
  491. first_logical_block = 0;
  492. for (first_block = 0; first_block < s->nb_blocks; first_block++) {
  493. /* if the block was not already explored, we can look at it */
  494. if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
  495. block = first_block;
  496. chain_length = 0;
  497. do_format_chain = 0;
  498. for (;;) {
  499. /* read the block header. If error, we format the chain */
  500. if (MTD_READOOB(s->mtd, block * s->EraseSize + 8, 8, 
  501. &retlen, (char *)&h0) < 0 ||
  502.     MTD_READOOB(s->mtd, block * s->EraseSize + SECTORSIZE + 8, 8, 
  503. &retlen, (char *)&h1) < 0) {
  504. s->ReplUnitTable[block] = BLOCK_NIL;
  505. do_format_chain = 1;
  506. break;
  507. }
  508. logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
  509. rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
  510. nb_erases = le32_to_cpu (h1.WearInfo);
  511. erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
  512. is_first_block = !(logical_block >> 15);
  513. logical_block = logical_block & 0x7fff;
  514. /* invalid/free block test */
  515. if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
  516. if (chain_length == 0) {
  517. /* if not currently in a chain, we can handle it safely */
  518. if (check_and_mark_free_block(s, block) < 0) {
  519. /* not really free: format it */
  520. printk("Formatting block %dn", block);
  521. if (NFTL_formatblock(s, block) < 0) {
  522. /* could not format: reserve the block */
  523. s->ReplUnitTable[block] = BLOCK_RESERVED;
  524. } else {
  525. s->ReplUnitTable[block] = BLOCK_FREE;
  526. }
  527. } else {
  528. /* free block: mark it */
  529. s->ReplUnitTable[block] = BLOCK_FREE;
  530. }
  531. /* directly examine the next block. */
  532. goto examine_ReplUnitTable;
  533. } else {
  534. /* the block was in a chain : this is bad. We
  535.    must format all the chain */
  536. printk("Block %d: free but referenced in chain %dn",
  537.        block, first_block);
  538. s->ReplUnitTable[block] = BLOCK_NIL;
  539. do_format_chain = 1;
  540. break;
  541. }
  542. }
  543. /* we accept only first blocks here */
  544. if (chain_length == 0) {
  545. /* this block is not the first block in chain :
  546.    ignore it, it will be included in a chain
  547.    later, or marked as not explored */
  548. if (!is_first_block)
  549. goto examine_ReplUnitTable;
  550. first_logical_block = logical_block;
  551. } else {
  552. if (logical_block != first_logical_block) {
  553. printk("Block %d: incorrect logical block: %d expected: %dn", 
  554.        block, logical_block, first_logical_block);
  555. /* the chain is incorrect : we must format it,
  556.    but we need to read it completly */
  557. do_format_chain = 1;
  558. }
  559. if (is_first_block) {
  560. /* we accept that a block is marked as first
  561.    block while being last block in a chain
  562.    only if the chain is being folded */
  563. if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
  564.     rep_block != 0xffff) {
  565. printk("Block %d: incorrectly marked as first block in chainn",
  566.        block);
  567. /* the chain is incorrect : we must format it,
  568.    but we need to read it completly */
  569. do_format_chain = 1;
  570. } else {
  571. printk("Block %d: folding in progress - ignoring first block flagn",
  572.        block);
  573. }
  574. }
  575. }
  576. chain_length++;
  577. if (rep_block == 0xffff) {
  578. /* no more blocks after */
  579. s->ReplUnitTable[block] = BLOCK_NIL;
  580. break;
  581. } else if (rep_block >= s->nb_blocks) {
  582. printk("Block %d: referencing invalid block %dn", 
  583.        block, rep_block);
  584. do_format_chain = 1;
  585. s->ReplUnitTable[block] = BLOCK_NIL;
  586. break;
  587. } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
  588. /* same problem as previous 'is_first_block' test:
  589.    we accept that the last block of a chain has
  590.    the first_block flag set if folding is in
  591.    progress. We handle here the case where the
  592.    last block appeared first */
  593. if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
  594.     s->EUNtable[first_logical_block] == rep_block &&
  595.     get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
  596. /* EUNtable[] will be set after */
  597. printk("Block %d: folding in progress - ignoring first block flagn",
  598.        rep_block);
  599. s->ReplUnitTable[block] = rep_block;
  600. s->EUNtable[first_logical_block] = BLOCK_NIL;
  601. } else {
  602. printk("Block %d: referencing block %d already in another chainn", 
  603.        block, rep_block);
  604. /* XXX: should handle correctly fold in progress chains */
  605. do_format_chain = 1;
  606. s->ReplUnitTable[block] = BLOCK_NIL;
  607. }
  608. break;
  609. } else {
  610. /* this is OK */
  611. s->ReplUnitTable[block] = rep_block;
  612. block = rep_block;
  613. }
  614. }
  615. /* the chain was completely explored. Now we can decide
  616.    what to do with it */
  617. if (do_format_chain) {
  618. /* invalid chain : format it */
  619. format_chain(s, first_block);
  620. } else {
  621. unsigned int first_block1, chain_to_format, chain_length1;
  622. int fold_mark;
  623. /* valid chain : get foldmark */
  624. fold_mark = get_fold_mark(s, first_block);
  625. if (fold_mark == 0) {
  626. /* cannot get foldmark : format the chain */
  627. printk("Could read foldmark at block %dn", first_block);
  628. format_chain(s, first_block);
  629. } else {
  630. if (fold_mark == FOLD_MARK_IN_PROGRESS)
  631. check_sectors_in_chain(s, first_block);
  632. /* now handle the case where we find two chains at the
  633.    same virtual address : we select the longer one,
  634.    because the shorter one is the one which was being
  635.    folded if the folding was not done in place */
  636. first_block1 = s->EUNtable[first_logical_block];
  637. if (first_block1 != BLOCK_NIL) {
  638. /* XXX: what to do if same length ? */
  639. chain_length1 = calc_chain_length(s, first_block1);
  640. printk("Two chains at blocks %d (len=%d) and %d (len=%d)n", 
  641.        first_block1, chain_length1, first_block, chain_length);
  642. if (chain_length >= chain_length1) {
  643. chain_to_format = first_block1;
  644. s->EUNtable[first_logical_block] = first_block;
  645. } else {
  646. chain_to_format = first_block;
  647. }
  648. format_chain(s, chain_to_format);
  649. } else {
  650. s->EUNtable[first_logical_block] = first_block;
  651. }
  652. }
  653. }
  654. }
  655. examine_ReplUnitTable:;
  656. }
  657. /* second pass to format unreferenced blocks  and init free block count */
  658. s->numfreeEUNs = 0;
  659. s->LastFreeEUN = BLOCK_NIL;
  660. for (block = 0; block < s->nb_blocks; block++) {
  661. if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
  662. printk("Unreferenced block %d, formatting itn", block);
  663. if (NFTL_formatblock(s, block) < 0)
  664. s->ReplUnitTable[block] = BLOCK_RESERVED;
  665. else
  666. s->ReplUnitTable[block] = BLOCK_FREE;
  667. }
  668. if (s->ReplUnitTable[block] == BLOCK_FREE) {
  669. s->numfreeEUNs++;
  670. s->LastFreeEUN = block;
  671. }
  672. }
  673. return 0;
  674. }