utmath.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:8k
- /*******************************************************************************
- *
- * Module Name: utmath - Integer math support routines
- * $Revision: 7 $
- *
- ******************************************************************************/
- /*
- * Copyright (C) 2000, 2001 R. Byron Moore
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
- #include "acpi.h"
- #define _COMPONENT ACPI_UTILITIES
- MODULE_NAME ("utmath")
- /*
- * Support for double-precision integer divide. This code is included here
- * in order to support kernel environments where the double-precision math
- * library is not available.
- */
- #ifndef ACPI_USE_NATIVE_DIVIDE
- /*******************************************************************************
- *
- * FUNCTION: Acpi_ut_short_divide
- *
- * PARAMETERS: In_dividend - Pointer to the dividend
- * Divisor - 32-bit divisor
- * Out_quotient - Pointer to where the quotient is returned
- * Out_remainder - Pointer to where the remainder is returned
- *
- * RETURN: Status (Checks for divide-by-zero)
- *
- * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
- * divide and modulo. The result is a 64-bit quotient and a
- * 32-bit remainder.
- *
- ******************************************************************************/
- acpi_status
- acpi_ut_short_divide (
- acpi_integer *in_dividend,
- u32 divisor,
- acpi_integer *out_quotient,
- u32 *out_remainder)
- {
- uint64_overlay dividend;
- uint64_overlay quotient;
- u32 remainder32;
- FUNCTION_TRACE ("Ut_short_divide");
- dividend.full = *in_dividend;
- /* Always check for a zero divisor */
- if (divisor == 0) {
- REPORT_ERROR (("Acpi_ut_short_divide: Divide by zeron"));
- return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
- }
- /*
- * The quotient is 64 bits, the remainder is always 32 bits,
- * and is generated by the second divide.
- */
- ACPI_DIV_64_BY_32 (0, dividend.part.hi, divisor,
- quotient.part.hi, remainder32);
- ACPI_DIV_64_BY_32 (remainder32, dividend.part.lo, divisor,
- quotient.part.lo, remainder32);
- /* Return only what was requested */
- if (out_quotient) {
- *out_quotient = quotient.full;
- }
- if (out_remainder) {
- *out_remainder = remainder32;
- }
- return_ACPI_STATUS (AE_OK);
- }
- /*******************************************************************************
- *
- * FUNCTION: Acpi_ut_divide
- *
- * PARAMETERS: In_dividend - Pointer to the dividend
- * In_divisor - Pointer to the divisor
- * Out_quotient - Pointer to where the quotient is returned
- * Out_remainder - Pointer to where the remainder is returned
- *
- * RETURN: Status (Checks for divide-by-zero)
- *
- * DESCRIPTION: Perform a divide and modulo.
- *
- ******************************************************************************/
- acpi_status
- acpi_ut_divide (
- acpi_integer *in_dividend,
- acpi_integer *in_divisor,
- acpi_integer *out_quotient,
- acpi_integer *out_remainder)
- {
- uint64_overlay dividend;
- uint64_overlay divisor;
- uint64_overlay quotient;
- uint64_overlay remainder;
- uint64_overlay normalized_dividend;
- uint64_overlay normalized_divisor;
- u32 partial1;
- uint64_overlay partial2;
- uint64_overlay partial3;
- FUNCTION_TRACE ("Ut_divide");
- /* Always check for a zero divisor */
- if (*in_divisor == 0) {
- REPORT_ERROR (("Acpi_ut_divide: Divide by zeron"));
- return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
- }
- divisor.full = *in_divisor;
- dividend.full = *in_dividend;
- if (divisor.part.hi == 0) {
- /*
- * 1) Simplest case is where the divisor is 32 bits, we can
- * just do two divides
- */
- remainder.part.hi = 0;
- /*
- * The quotient is 64 bits, the remainder is always 32 bits,
- * and is generated by the second divide.
- */
- ACPI_DIV_64_BY_32 (0, dividend.part.hi, divisor.part.lo,
- quotient.part.hi, partial1);
- ACPI_DIV_64_BY_32 (partial1, dividend.part.lo, divisor.part.lo,
- quotient.part.lo, remainder.part.lo);
- }
- else {
- /*
- * 2) The general case where the divisor is a full 64 bits
- * is more difficult
- */
- quotient.part.hi = 0;
- normalized_dividend = dividend;
- normalized_divisor = divisor;
- /* Normalize the operands (shift until the divisor is < 32 bits) */
- do {
- ACPI_SHIFT_RIGHT_64 (normalized_divisor.part.hi,
- normalized_divisor.part.lo);
- ACPI_SHIFT_RIGHT_64 (normalized_dividend.part.hi,
- normalized_dividend.part.lo);
- } while (normalized_divisor.part.hi != 0);
- /* Partial divide */
- ACPI_DIV_64_BY_32 (normalized_dividend.part.hi,
- normalized_dividend.part.lo,
- normalized_divisor.part.lo,
- quotient.part.lo, partial1);
- /*
- * The quotient is always 32 bits, and simply requires adjustment.
- * The 64-bit remainder must be generated.
- */
- partial1 = quotient.part.lo * divisor.part.hi;
- partial2.full = (acpi_integer) quotient.part.lo * divisor.part.lo;
- partial3.full = partial2.part.hi + partial1;
- remainder.part.hi = partial3.part.lo;
- remainder.part.lo = partial2.part.lo;
- if (partial3.part.hi == 0) {
- if (partial3.part.lo >= dividend.part.hi) {
- if (partial3.part.lo == dividend.part.hi) {
- if (partial2.part.lo > dividend.part.lo) {
- quotient.part.lo--;
- remainder.full -= divisor.full;
- }
- }
- else {
- quotient.part.lo--;
- remainder.full -= divisor.full;
- }
- }
- remainder.full = remainder.full - dividend.full;
- remainder.part.hi = -((s32) remainder.part.hi);
- remainder.part.lo = -((s32) remainder.part.lo);
- if (remainder.part.lo) {
- remainder.part.hi--;
- }
- }
- }
- /* Return only what was requested */
- if (out_quotient) {
- *out_quotient = quotient.full;
- }
- if (out_remainder) {
- *out_remainder = remainder.full;
- }
- return_ACPI_STATUS (AE_OK);
- }
- #else
- /*******************************************************************************
- *
- * FUNCTION: Acpi_ut_short_divide, Acpi_ut_divide
- *
- * DESCRIPTION: Native versions of the Ut_divide functions. Use these if either
- * 1) The target is a 64-bit platform and therefore 64-bit
- * integer math is supported directly by the machine.
- * 2) The target is a 32-bit or 16-bit platform, and the
- * double-precision integer math library is available to
- * perform the divide.
- *
- ******************************************************************************/
- acpi_status
- acpi_ut_short_divide (
- acpi_integer *in_dividend,
- u32 divisor,
- acpi_integer *out_quotient,
- u32 *out_remainder)
- {
- FUNCTION_TRACE ("Ut_short_divide");
- /* Always check for a zero divisor */
- if (divisor == 0) {
- REPORT_ERROR (("Acpi_ut_short_divide: Divide by zeron"));
- return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
- }
- /* Return only what was requested */
- if (out_quotient) {
- *out_quotient = *in_dividend / divisor;
- }
- if (out_remainder) {
- *out_remainder = (u32) *in_dividend % divisor;
- }
- return_ACPI_STATUS (AE_OK);
- }
- acpi_status
- acpi_ut_divide (
- acpi_integer *in_dividend,
- acpi_integer *in_divisor,
- acpi_integer *out_quotient,
- acpi_integer *out_remainder)
- {
- FUNCTION_TRACE ("Ut_divide");
- /* Always check for a zero divisor */
- if (*in_divisor == 0) {
- REPORT_ERROR (("Acpi_ut_divide: Divide by zeron"));
- return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
- }
- /* Return only what was requested */
- if (out_quotient) {
- *out_quotient = *in_dividend / *in_divisor;
- }
- if (out_remainder) {
- *out_remainder = *in_dividend % *in_divisor;
- }
- return_ACPI_STATUS (AE_OK);
- }
- #endif