z85230.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:40k
- /*
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- *
- * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
- * (c) Copyright 2000, 2001 Red Hat Inc
- *
- * Development of this driver was funded by Equiinet Ltd
- * http://www.equiinet.com
- *
- * ChangeLog:
- *
- * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
- * unification of all the Z85x30 asynchronous drivers for real.
- *
- * DMA now uses get_free_page as kmalloc buffers may span a 64K
- * boundary.
- *
- * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
- *
- * Performance
- *
- * Z85230:
- * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
- * X.25 is not unrealistic on all machines. DMA mode can in theory
- * handle T1/E1 quite nicely. In practice the limit seems to be about
- * 512Kbit->1Mbit depending on motherboard.
- *
- * Z85C30:
- * 64K will take DMA, 9600 baud X.25 should be ok.
- *
- * Z8530:
- * Synchronous mode without DMA is unlikely to pass about 2400 baud.
- */
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/net.h>
- #include <linux/skbuff.h>
- #include <linux/netdevice.h>
- #include <linux/if_arp.h>
- #include <linux/delay.h>
- #include <linux/ioport.h>
- #include <linux/init.h>
- #include <asm/dma.h>
- #include <asm/io.h>
- #define RT_LOCK
- #define RT_UNLOCK
- #include <linux/spinlock.h>
- #include <net/syncppp.h>
- #include "z85230.h"
- /**
- * z8530_read_port - Architecture specific interface function
- * @p: port to read
- *
- * Provided port access methods. The Comtrol SV11 requires no delays
- * between accesses and uses PC I/O. Some drivers may need a 5uS delay
- *
- * In the longer term this should become an architecture specific
- * section so that this can become a generic driver interface for all
- * platforms. For now we only handle PC I/O ports with or without the
- * dread 5uS sanity delay.
- *
- * The caller must hold sufficient locks to avoid violating the horrible
- * 5uS delay rule.
- */
- static inline int z8530_read_port(unsigned long p)
- {
- u8 r=inb(Z8530_PORT_OF(p));
- if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
- udelay(5);
- return r;
- }
- /**
- * z8530_write_port - Architecture specific interface function
- * @p: port to write
- * @d: value to write
- *
- * Write a value to a port with delays if need be. Note that the
- * caller must hold locks to avoid read/writes from other contexts
- * violating the 5uS rule
- *
- * In the longer term this should become an architecture specific
- * section so that this can become a generic driver interface for all
- * platforms. For now we only handle PC I/O ports with or without the
- * dread 5uS sanity delay.
- */
- static inline void z8530_write_port(unsigned long p, u8 d)
- {
- outb(d,Z8530_PORT_OF(p));
- if(p&Z8530_PORT_SLEEP)
- udelay(5);
- }
- static void z8530_rx_done(struct z8530_channel *c);
- static void z8530_tx_done(struct z8530_channel *c);
- /**
- * read_zsreg - Read a register from a Z85230
- * @c: Z8530 channel to read from (2 per chip)
- * @reg: Register to read
- * FIXME: Use a spinlock.
- *
- * Most of the Z8530 registers are indexed off the control registers.
- * A read is done by writing to the control register and reading the
- * register back. The caller must hold the lock
- */
-
- static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
- {
- if(reg)
- z8530_write_port(c->ctrlio, reg);
- return z8530_read_port(c->ctrlio);
- }
- /**
- * read_zsdata - Read the data port of a Z8530 channel
- * @c: The Z8530 channel to read the data port from
- *
- * The data port provides fast access to some things. We still
- * have all the 5uS delays to worry about.
- */
- static inline u8 read_zsdata(struct z8530_channel *c)
- {
- u8 r;
- r=z8530_read_port(c->dataio);
- return r;
- }
- /**
- * write_zsreg - Write to a Z8530 channel register
- * @c: The Z8530 channel
- * @reg: Register number
- * @val: Value to write
- *
- * Write a value to an indexed register. The caller must hold the lock
- * to honour the irritating delay rules. We know about register 0
- * being fast to access.
- */
-
- static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
- {
- unsigned long flags;
- spin_lock_irqsave(c->lock, flags);
- if(reg)
- z8530_write_port(c->ctrlio, reg);
- z8530_write_port(c->ctrlio, val);
- spin_unlock_irqrestore(c->lock, flags);
- }
- /**
- * write_zsctrl - Write to a Z8530 control register
- * @c: The Z8530 channel
- * @val: Value to write
- *
- * Write directly to the control register on the Z8530
- */
- static inline void write_zsctrl(struct z8530_channel *c, u8 val)
- {
- z8530_write_port(c->ctrlio, val);
- }
- /**
- * write_zsdata - Write to a Z8530 control register
- * @c: The Z8530 channel
- * @val: Value to write
- *
- * Write directly to the data register on the Z8530
- */
- static inline void write_zsdata(struct z8530_channel *c, u8 val)
- {
- z8530_write_port(c->dataio, val);
- }
- /*
- * Register loading parameters for a dead port
- */
-
- u8 z8530_dead_port[]=
- {
- 255
- };
- EXPORT_SYMBOL(z8530_dead_port);
- /*
- * Register loading parameters for currently supported circuit types
- */
- /*
- * Data clocked by telco end. This is the correct data for the UK
- * "kilostream" service, and most other similar services.
- */
-
- u8 z8530_hdlc_kilostream[]=
- {
- 4, SYNC_ENAB|SDLC|X1CLK,
- 2, 0, /* No vector */
- 1, 0,
- 3, ENT_HM|RxCRC_ENAB|Rx8,
- 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
- 9, 0, /* Disable interrupts */
- 6, 0xFF,
- 7, FLAG,
- 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
- 11, TCTRxCP,
- 14, DISDPLL,
- 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
- 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
- 9, NV|MIE|NORESET,
- 255
- };
- EXPORT_SYMBOL(z8530_hdlc_kilostream);
- /*
- * As above but for enhanced chips.
- */
-
- u8 z8530_hdlc_kilostream_85230[]=
- {
- 4, SYNC_ENAB|SDLC|X1CLK,
- 2, 0, /* No vector */
- 1, 0,
- 3, ENT_HM|RxCRC_ENAB|Rx8,
- 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
- 9, 0, /* Disable interrupts */
- 6, 0xFF,
- 7, FLAG,
- 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
- 11, TCTRxCP,
- 14, DISDPLL,
- 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
- 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
- 9, NV|MIE|NORESET,
- 23, 3, /* Extended mode AUTO TX and EOM*/
-
- 255
- };
- EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
- /**
- * z8530_flush_fifo - Flush on chip RX FIFO
- * @c: Channel to flush
- *
- * Flush the receive FIFO. There is no specific option for this, we
- * blindly read bytes and discard them. Reading when there is no data
- * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
- *
- * All locking is handled for the caller. On return data may still be
- * present if it arrived during the flush.
- */
-
- static void z8530_flush_fifo(struct z8530_channel *c)
- {
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- if(c->dev->type==Z85230)
- {
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- read_zsreg(c, R1);
- }
- }
- /**
- * z8530_rtsdtr - Control the outgoing DTS/RTS line
- * @c: The Z8530 channel to control;
- * @set: 1 to set, 0 to clear
- *
- * Sets or clears DTR/RTS on the requested line. All locking is handled
- * by the caller. For now we assume all boards use the actual RTS/DTR
- * on the chip. Apparently one or two don't. We'll scream about them
- * later.
- */
- static void z8530_rtsdtr(struct z8530_channel *c, int set)
- {
- if (set)
- c->regs[5] |= (RTS | DTR);
- else
- c->regs[5] &= ~(RTS | DTR);
- write_zsreg(c, R5, c->regs[5]);
- }
- /**
- * z8530_rx - Handle a PIO receive event
- * @c: Z8530 channel to process
- *
- * Receive handler for receiving in PIO mode. This is much like the
- * async one but not quite the same or as complex
- *
- * Note: Its intended that this handler can easily be separated from
- * the main code to run realtime. That'll be needed for some machines
- * (eg to ever clock 64kbits on a sparc ;)).
- *
- * The RT_LOCK macros don't do anything now. Keep the code covered
- * by them as short as possible in all circumstances - clocks cost
- * baud. The interrupt handler is assumed to be atomic w.r.t. to
- * other code - this is true in the RT case too.
- *
- * We only cover the sync cases for this. If you want 2Mbit async
- * do it yourself but consider medical assistance first. This non DMA
- * synchronous mode is portable code. The DMA mode assumes PCI like
- * ISA DMA
- *
- * Called with the device lock held
- */
-
- static void z8530_rx(struct z8530_channel *c)
- {
- u8 ch,stat;
-
- while(1)
- {
- /* FIFO empty ? */
- if(!(read_zsreg(c, R0)&1))
- break;
- ch=read_zsdata(c);
- stat=read_zsreg(c, R1);
-
- /*
- * Overrun ?
- */
- if(c->count < c->max)
- {
- *c->dptr++=ch;
- c->count++;
- }
- if(stat&END_FR)
- {
-
- /*
- * Error ?
- */
- if(stat&(Rx_OVR|CRC_ERR))
- {
- /* Rewind the buffer and return */
- if(c->skb)
- c->dptr=c->skb->data;
- c->count=0;
- if(stat&Rx_OVR)
- {
- printk(KERN_WARNING "%s: overrunn", c->dev->name);
- c->rx_overrun++;
- }
- if(stat&CRC_ERR)
- {
- c->rx_crc_err++;
- /* printk("crc errorn"); */
- }
- /* Shove the frame upstream */
- }
- else
- {
- /*
- * Drop the lock for RX processing, or
- * there are deadlocks
- */
- z8530_rx_done(c);
- write_zsctrl(c, RES_Rx_CRC);
- }
- }
- }
- /*
- * Clear irq
- */
- write_zsctrl(c, ERR_RES);
- write_zsctrl(c, RES_H_IUS);
- }
- /**
- * z8530_tx - Handle a PIO transmit event
- * @c: Z8530 channel to process
- *
- * Z8530 transmit interrupt handler for the PIO mode. The basic
- * idea is to attempt to keep the FIFO fed. We fill as many bytes
- * in as possible, its quite possible that we won't keep up with the
- * data rate otherwise.
- */
-
- static void z8530_tx(struct z8530_channel *c)
- {
- while(c->txcount) {
- /* FIFO full ? */
- if(!(read_zsreg(c, R0)&4))
- break;
- c->txcount--;
- /*
- * Shovel out the byte
- */
- write_zsreg(c, R8, *c->tx_ptr++);
- write_zsctrl(c, RES_H_IUS);
- /* We are about to underflow */
- if(c->txcount==0)
- {
- write_zsctrl(c, RES_EOM_L);
- write_zsreg(c, R10, c->regs[10]&~ABUNDER);
- }
- }
-
- /*
- * End of frame TX - fire another one
- */
-
- write_zsctrl(c, RES_Tx_P);
- z8530_tx_done(c);
- write_zsctrl(c, RES_H_IUS);
- }
- /**
- * z8530_status - Handle a PIO status exception
- * @chan: Z8530 channel to process
- *
- * A status event occurred in PIO synchronous mode. There are several
- * reasons the chip will bother us here. A transmit underrun means we
- * failed to feed the chip fast enough and just broke a packet. A DCD
- * change is a line up or down. We communicate that back to the protocol
- * layer for synchronous PPP to renegotiate.
- */
- static void z8530_status(struct z8530_channel *chan)
- {
- u8 status, altered;
- status=read_zsreg(chan, R0);
- altered=chan->status^status;
-
- chan->status=status;
-
- if(status&TxEOM)
- {
- /* printk("%s: Tx underrun.n", chan->dev->name); */
- chan->stats.tx_fifo_errors++;
- write_zsctrl(chan, ERR_RES);
- z8530_tx_done(chan);
- }
-
- if(altered&chan->dcdcheck)
- {
- if(status&chan->dcdcheck)
- {
- printk(KERN_INFO "%s: DCD raisedn", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
- if(chan->netdevice &&
- ((chan->netdevice->type == ARPHRD_HDLC) ||
- (chan->netdevice->type == ARPHRD_PPP)))
- sppp_reopen(chan->netdevice);
- }
- else
- {
- printk(KERN_INFO "%s: DCD lostn", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
- z8530_flush_fifo(chan);
- }
-
- }
- write_zsctrl(chan, RES_EXT_INT);
- write_zsctrl(chan, RES_H_IUS);
- }
- struct z8530_irqhandler z8530_sync=
- {
- z8530_rx,
- z8530_tx,
- z8530_status
- };
- EXPORT_SYMBOL(z8530_sync);
- /**
- * z8530_dma_rx - Handle a DMA RX event
- * @chan: Channel to handle
- *
- * Non bus mastering DMA interfaces for the Z8x30 devices. This
- * is really pretty PC specific. The DMA mode means that most receive
- * events are handled by the DMA hardware. We get a kick here only if
- * a frame ended.
- */
-
- static void z8530_dma_rx(struct z8530_channel *chan)
- {
- if(chan->rxdma_on)
- {
- /* Special condition check only */
- u8 status;
-
- read_zsreg(chan, R7);
- read_zsreg(chan, R6);
-
- status=read_zsreg(chan, R1);
-
- if(status&END_FR)
- {
- z8530_rx_done(chan); /* Fire up the next one */
- }
- write_zsctrl(chan, ERR_RES);
- write_zsctrl(chan, RES_H_IUS);
- }
- else
- {
- /* DMA is off right now, drain the slow way */
- z8530_rx(chan);
- }
- }
- /**
- * z8530_dma_tx - Handle a DMA TX event
- * @chan: The Z8530 channel to handle
- *
- * We have received an interrupt while doing DMA transmissions. It
- * shouldn't happen. Scream loudly if it does.
- */
-
- static void z8530_dma_tx(struct z8530_channel *chan)
- {
- if(!chan->dma_tx)
- {
- printk(KERN_WARNING "Hey who turned the DMA off?n");
- z8530_tx(chan);
- return;
- }
- /* This shouldnt occur in DMA mode */
- printk(KERN_ERR "DMA tx - bogus event!n");
- z8530_tx(chan);
- }
- /**
- * z8530_dma_status - Handle a DMA status exception
- * @chan: Z8530 channel to process
- *
- * A status event occurred on the Z8530. We receive these for two reasons
- * when in DMA mode. Firstly if we finished a packet transfer we get one
- * and kick the next packet out. Secondly we may see a DCD change and
- * have to poke the protocol layer.
- *
- */
-
- static void z8530_dma_status(struct z8530_channel *chan)
- {
- u8 status, altered;
- status=read_zsreg(chan, R0);
- altered=chan->status^status;
-
- chan->status=status;
- if(chan->dma_tx)
- {
- if(status&TxEOM)
- {
- unsigned long flags;
-
- flags=claim_dma_lock();
- disable_dma(chan->txdma);
- clear_dma_ff(chan->txdma);
- chan->txdma_on=0;
- release_dma_lock(flags);
- z8530_tx_done(chan);
- }
- }
- if(altered&chan->dcdcheck)
- {
- if(status&chan->dcdcheck)
- {
- printk(KERN_INFO "%s: DCD raisedn", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
- if(chan->netdevice &&
- ((chan->netdevice->type == ARPHRD_HDLC) ||
- (chan->netdevice->type == ARPHRD_PPP)))
- sppp_reopen(chan->netdevice);
- }
- else
- {
- printk(KERN_INFO "%s:DCD lostn", chan->dev->name);
- write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
- z8530_flush_fifo(chan);
- }
- }
- write_zsctrl(chan, RES_EXT_INT);
- write_zsctrl(chan, RES_H_IUS);
- }
- struct z8530_irqhandler z8530_dma_sync=
- {
- z8530_dma_rx,
- z8530_dma_tx,
- z8530_dma_status
- };
- EXPORT_SYMBOL(z8530_dma_sync);
- struct z8530_irqhandler z8530_txdma_sync=
- {
- z8530_rx,
- z8530_dma_tx,
- z8530_dma_status
- };
- EXPORT_SYMBOL(z8530_txdma_sync);
- /**
- * z8530_rx_clear - Handle RX events from a stopped chip
- * @c: Z8530 channel to shut up
- *
- * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
- * For machines with PCI Z85x30 cards, or level triggered interrupts
- * (eg the MacII) we must clear the interrupt cause or die.
- */
- static void z8530_rx_clear(struct z8530_channel *c)
- {
- /*
- * Data and status bytes
- */
- u8 stat;
- read_zsdata(c);
- stat=read_zsreg(c, R1);
-
- if(stat&END_FR)
- write_zsctrl(c, RES_Rx_CRC);
- /*
- * Clear irq
- */
- write_zsctrl(c, ERR_RES);
- write_zsctrl(c, RES_H_IUS);
- }
- /**
- * z8530_tx_clear - Handle TX events from a stopped chip
- * @c: Z8530 channel to shut up
- *
- * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
- * For machines with PCI Z85x30 cards, or level triggered interrupts
- * (eg the MacII) we must clear the interrupt cause or die.
- */
- static void z8530_tx_clear(struct z8530_channel *c)
- {
- write_zsctrl(c, RES_Tx_P);
- write_zsctrl(c, RES_H_IUS);
- }
- /**
- * z8530_status_clear - Handle status events from a stopped chip
- * @chan: Z8530 channel to shut up
- *
- * Status interrupt vectors for a Z8530 that is in 'parked' mode.
- * For machines with PCI Z85x30 cards, or level triggered interrupts
- * (eg the MacII) we must clear the interrupt cause or die.
- */
- static void z8530_status_clear(struct z8530_channel *chan)
- {
- u8 status=read_zsreg(chan, R0);
- if(status&TxEOM)
- write_zsctrl(chan, ERR_RES);
- write_zsctrl(chan, RES_EXT_INT);
- write_zsctrl(chan, RES_H_IUS);
- }
- struct z8530_irqhandler z8530_nop=
- {
- z8530_rx_clear,
- z8530_tx_clear,
- z8530_status_clear
- };
- EXPORT_SYMBOL(z8530_nop);
- /**
- * z8530_interrupt - Handle an interrupt from a Z8530
- * @irq: Interrupt number
- * @dev_id: The Z8530 device that is interrupting.
- * @regs: unused
- *
- * A Z85[2]30 device has stuck its hand in the air for attention.
- * We scan both the channels on the chip for events and then call
- * the channel specific call backs for each channel that has events.
- * We have to use callback functions because the two channels can be
- * in different modes.
- *
- * Locking is done for the handlers. Note that locking is done
- * at the chip level (the 5uS delay issue is per chip not per
- * channel). c->lock for both channels points to dev->lock
- */
- void z8530_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- struct z8530_dev *dev=dev_id;
- u8 intr;
- static volatile int locker=0;
- int work=0;
- struct z8530_irqhandler *irqs=dev->chanA.irqs;
-
- if(locker)
- {
- printk(KERN_ERR "IRQ re-entern");
- return;
- }
- locker=1;
- spin_lock(&dev->lock);
- while(++work<5000)
- {
- intr = read_zsreg(&dev->chanA, R3);
- if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
- break;
-
- /* This holds the IRQ status. On the 8530 you must read it from chan
- A even though it applies to the whole chip */
-
- /* Now walk the chip and see what it is wanting - it may be
- an IRQ for someone else remember */
-
- if(intr & (CHARxIP|CHATxIP|CHAEXT))
- {
- if(intr&CHARxIP)
- irqs->rx(&dev->chanA);
- if(intr&CHATxIP)
- irqs->tx(&dev->chanA);
- if(intr&CHAEXT)
- irqs->status(&dev->chanA);
- }
- irqs=dev->chanB.irqs;
- if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
- {
- if(intr&CHBRxIP)
- irqs->rx(&dev->chanB);
- if(intr&CHBTxIP)
- irqs->tx(&dev->chanB);
- if(intr&CHBEXT)
- irqs->status(&dev->chanB);
- }
- }
- spin_unlock(&dev->lock);
- if(work==5000)
- printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!n", dev->name, intr);
- /* Ok all done */
- locker=0;
- }
- EXPORT_SYMBOL(z8530_interrupt);
- static char reg_init[16]=
- {
- 0,0,0,0,
- 0,0,0,0,
- 0,0,0,0,
- 0x55,0,0,0
- };
- /**
- * z8530_sync_open - Open a Z8530 channel for PIO
- * @dev: The network interface we are using
- * @c: The Z8530 channel to open in synchronous PIO mode
- *
- * Switch a Z8530 into synchronous mode without DMA assist. We
- * raise the RTS/DTR and commence network operation.
- */
-
- int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
- {
- unsigned long flags;
- spin_lock_irqsave(c->lock, flags);
- c->sync = 1;
- c->mtu = dev->mtu+64;
- c->count = 0;
- c->skb = NULL;
- c->skb2 = NULL;
- c->irqs = &z8530_sync;
- /* This loads the double buffer up */
- z8530_rx_done(c); /* Load the frame ring */
- z8530_rx_done(c); /* Load the backup frame */
- z8530_rtsdtr(c,1);
- c->dma_tx = 0;
- c->regs[R1]|=TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- write_zsreg(c, R3, c->regs[R3]|RxENABLE);
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
- }
- EXPORT_SYMBOL(z8530_sync_open);
- /**
- * z8530_sync_close - Close a PIO Z8530 channel
- * @dev: Network device to close
- * @c: Z8530 channel to disassociate and move to idle
- *
- * Close down a Z8530 interface and switch its interrupt handlers
- * to discard future events.
- */
-
- int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
- {
- u8 chk;
- unsigned long flags;
-
- spin_lock_irqsave(c->lock, flags);
- c->irqs = &z8530_nop;
- c->max = 0;
- c->sync = 0;
-
- chk=read_zsreg(c,R0);
- write_zsreg(c, R3, c->regs[R3]);
- z8530_rtsdtr(c,0);
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
- }
- EXPORT_SYMBOL(z8530_sync_close);
- /**
- * z8530_sync_dma_open - Open a Z8530 for DMA I/O
- * @dev: The network device to attach
- * @c: The Z8530 channel to configure in sync DMA mode.
- *
- * Set up a Z85x30 device for synchronous DMA in both directions. Two
- * ISA DMA channels must be available for this to work. We assume ISA
- * DMA driven I/O and PC limits on access.
- */
-
- int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
- {
- unsigned long flags;
-
- c->sync = 1;
- c->mtu = dev->mtu+64;
- c->count = 0;
- c->skb = NULL;
- c->skb2 = NULL;
- /*
- * Load the DMA interfaces up
- */
- c->rxdma_on = 0;
- c->txdma_on = 0;
-
- /*
- * Allocate the DMA flip buffers. Limit by page size.
- * Everyone runs 1500 mtu or less on wan links so this
- * should be fine.
- */
-
- if(c->mtu > PAGE_SIZE/2)
- return -EMSGSIZE;
-
- c->rx_buf[0]=(void *)get_free_page(GFP_KERNEL|GFP_DMA);
- if(c->rx_buf[0]==NULL)
- return -ENOBUFS;
- c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
-
- c->tx_dma_buf[0]=(void *)get_free_page(GFP_KERNEL|GFP_DMA);
- if(c->tx_dma_buf[0]==NULL)
- {
- free_page((unsigned long)c->rx_buf[0]);
- c->rx_buf[0]=NULL;
- return -ENOBUFS;
- }
- c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
- c->tx_dma_used=0;
- c->dma_tx = 1;
- c->dma_num=0;
- c->dma_ready=1;
-
- /*
- * Enable DMA control mode
- */
- spin_lock_irqsave(c->lock, flags);
-
- /*
- * TX DMA via DIR/REQ
- */
-
- c->regs[R14]|= DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
- c->regs[R1]&= ~TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
-
- /*
- * RX DMA via W/Req
- */
- c->regs[R1]|= WT_FN_RDYFN;
- c->regs[R1]|= WT_RDY_RT;
- c->regs[R1]|= INT_ERR_Rx;
- c->regs[R1]&= ~TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R1]|= WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
-
- /*
- * DMA interrupts
- */
-
- /*
- * Set up the DMA configuration
- */
-
- flags=claim_dma_lock();
-
- disable_dma(c->rxdma);
- clear_dma_ff(c->rxdma);
- set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
- set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
- set_dma_count(c->rxdma, c->mtu);
- enable_dma(c->rxdma);
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- set_dma_mode(c->txdma, DMA_MODE_WRITE);
- disable_dma(c->txdma);
-
- release_dma_lock(flags);
-
- /*
- * Select the DMA interrupt handlers
- */
- c->rxdma_on = 1;
- c->txdma_on = 1;
- c->tx_dma_used = 1;
-
- c->irqs = &z8530_dma_sync;
- z8530_rtsdtr(c,1);
- write_zsreg(c, R3, c->regs[R3]|RxENABLE);
- spin_unlock_irqrestore(c->lock, flags);
-
- return 0;
- }
- EXPORT_SYMBOL(z8530_sync_dma_open);
- /**
- * z8530_sync_dma_close - Close down DMA I/O
- * @dev: Network device to detach
- * @c: Z8530 channel to move into discard mode
- *
- * Shut down a DMA mode synchronous interface. Halt the DMA, and
- * free the buffers.
- */
-
- int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
- {
- u8 chk;
- unsigned long flags;
-
- c->irqs = &z8530_nop;
- c->max = 0;
- c->sync = 0;
-
- /*
- * Disable the PC DMA channels
- */
-
- flags=claim_dma_lock();
- disable_dma(c->rxdma);
- clear_dma_ff(c->rxdma);
-
- c->rxdma_on = 0;
-
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- release_dma_lock(flags);
-
- c->txdma_on = 0;
- c->tx_dma_used = 0;
- spin_lock_irqsave(c->lock, flags);
- /*
- * Disable DMA control mode
- */
-
- c->regs[R1]&= ~WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
- c->regs[R1]|= INT_ALL_Rx;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R14]&= ~DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- if(c->rx_buf[0])
- {
- free_page((unsigned long)c->rx_buf[0]);
- c->rx_buf[0]=NULL;
- }
- if(c->tx_dma_buf[0])
- {
- free_page((unsigned long)c->tx_dma_buf[0]);
- c->tx_dma_buf[0]=NULL;
- }
- chk=read_zsreg(c,R0);
- write_zsreg(c, R3, c->regs[R3]);
- z8530_rtsdtr(c,0);
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
- }
- EXPORT_SYMBOL(z8530_sync_dma_close);
- /**
- * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
- * @dev: The network device to attach
- * @c: The Z8530 channel to configure in sync DMA mode.
- *
- * Set up a Z85x30 device for synchronous DMA tranmission. One
- * ISA DMA channel must be available for this to work. The receive
- * side is run in PIO mode, but then it has the bigger FIFO.
- */
- int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
- {
- unsigned long flags;
- printk("Opening sync interface for TX-DMAn");
- c->sync = 1;
- c->mtu = dev->mtu+64;
- c->count = 0;
- c->skb = NULL;
- c->skb2 = NULL;
-
- /*
- * Allocate the DMA flip buffers. Limit by page size.
- * Everyone runs 1500 mtu or less on wan links so this
- * should be fine.
- */
-
- if(c->mtu > PAGE_SIZE/2)
- return -EMSGSIZE;
-
- c->tx_dma_buf[0]=(void *)get_free_page(GFP_KERNEL|GFP_DMA);
- if(c->tx_dma_buf[0]==NULL)
- return -ENOBUFS;
- c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
- spin_lock_irqsave(c->lock, flags);
- /*
- * Load the PIO receive ring
- */
- z8530_rx_done(c);
- z8530_rx_done(c);
- /*
- * Load the DMA interfaces up
- */
- c->rxdma_on = 0;
- c->txdma_on = 0;
-
- c->tx_dma_used=0;
- c->dma_num=0;
- c->dma_ready=1;
- c->dma_tx = 1;
- /*
- * Enable DMA control mode
- */
- /*
- * TX DMA via DIR/REQ
- */
- c->regs[R14]|= DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- c->regs[R1]&= ~TxINT_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
-
- /*
- * Set up the DMA configuration
- */
-
- flags = claim_dma_lock();
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- set_dma_mode(c->txdma, DMA_MODE_WRITE);
- disable_dma(c->txdma);
- release_dma_lock(flags);
-
- /*
- * Select the DMA interrupt handlers
- */
- c->rxdma_on = 0;
- c->txdma_on = 1;
- c->tx_dma_used = 1;
-
- c->irqs = &z8530_txdma_sync;
- z8530_rtsdtr(c,1);
- write_zsreg(c, R3, c->regs[R3]|RxENABLE);
- spin_unlock_irqrestore(c->lock, flags);
-
- return 0;
- }
- EXPORT_SYMBOL(z8530_sync_txdma_open);
- /**
- * z8530_sync_txdma_close - Close down a TX driven DMA channel
- * @dev: Network device to detach
- * @c: Z8530 channel to move into discard mode
- *
- * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
- * and free the buffers.
- */
- int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
- {
- unsigned long flags;
- u8 chk;
-
- spin_lock_irqsave(c->lock, flags);
-
- c->irqs = &z8530_nop;
- c->max = 0;
- c->sync = 0;
-
- /*
- * Disable the PC DMA channels
- */
-
- flags = claim_dma_lock();
- disable_dma(c->txdma);
- clear_dma_ff(c->txdma);
- c->txdma_on = 0;
- c->tx_dma_used = 0;
- release_dma_lock(flags);
- /*
- * Disable DMA control mode
- */
-
- c->regs[R1]&= ~WT_RDY_ENAB;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
- c->regs[R1]|= INT_ALL_Rx;
- write_zsreg(c, R1, c->regs[R1]);
- c->regs[R14]&= ~DTRREQ;
- write_zsreg(c, R14, c->regs[R14]);
-
- if(c->tx_dma_buf[0])
- {
- free_page((unsigned long)c->tx_dma_buf[0]);
- c->tx_dma_buf[0]=NULL;
- }
- chk=read_zsreg(c,R0);
- write_zsreg(c, R3, c->regs[R3]);
- z8530_rtsdtr(c,0);
- return 0;
- }
- EXPORT_SYMBOL(z8530_sync_txdma_close);
- /*
- * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
- * it exists...
- */
-
- static char *z8530_type_name[]={
- "Z8530",
- "Z85C30",
- "Z85230"
- };
- /**
- * z8530_describe - Uniformly describe a Z8530 port
- * @dev: Z8530 device to describe
- * @mapping: string holding mapping type (eg "I/O" or "Mem")
- * @io: the port value in question
- *
- * Describe a Z8530 in a standard format. We must pass the I/O as
- * the port offset isnt predictable. The main reason for this function
- * is to try and get a common format of report.
- */
- void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
- {
- printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.n",
- dev->name,
- z8530_type_name[dev->type],
- mapping,
- Z8530_PORT_OF(io),
- dev->irq);
- }
- EXPORT_SYMBOL(z8530_describe);
- /*
- * Locked operation part of the z8530 init code
- */
-
- static int do_z8530_init(struct z8530_dev *dev)
- {
- /* NOP the interrupt handlers first - we might get a
- floating IRQ transition when we reset the chip */
- dev->chanA.irqs=&z8530_nop;
- dev->chanB.irqs=&z8530_nop;
- dev->chanA.dcdcheck=DCD;
- dev->chanB.dcdcheck=DCD;
- /* Set up the chip level lock */
- spin_lock_init(&dev->lock);
- dev->chanA.lock = &dev->lock;
- dev->chanB.lock = &dev->lock;
- /* Reset the chip */
- write_zsreg(&dev->chanA, R9, 0xC0);
- udelay(200);
- /* Now check its valid */
- write_zsreg(&dev->chanA, R12, 0xAA);
- if(read_zsreg(&dev->chanA, R12)!=0xAA)
- return -ENODEV;
- write_zsreg(&dev->chanA, R12, 0x55);
- if(read_zsreg(&dev->chanA, R12)!=0x55)
- return -ENODEV;
-
- dev->type=Z8530;
-
- /*
- * See the application note.
- */
-
- write_zsreg(&dev->chanA, R15, 0x01);
-
- /*
- * If we can set the low bit of R15 then
- * the chip is enhanced.
- */
-
- if(read_zsreg(&dev->chanA, R15)==0x01)
- {
- /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
- /* Put a char in the fifo */
- write_zsreg(&dev->chanA, R8, 0);
- if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
- dev->type = Z85230; /* Has a FIFO */
- else
- dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
- }
-
- /*
- * The code assumes R7' and friends are
- * off. Use write_zsext() for these and keep
- * this bit clear.
- */
-
- write_zsreg(&dev->chanA, R15, 0);
-
- /*
- * At this point it looks like the chip is behaving
- */
-
- memcpy(dev->chanA.regs, reg_init, 16);
- memcpy(dev->chanB.regs, reg_init ,16);
-
- return 0;
- }
- /**
- * z8530_init - Initialise a Z8530 device
- * @dev: Z8530 device to initialise.
- *
- * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
- * is present, identify the type and then program it to hopefully
- * keep quite and behave. This matters a lot, a Z8530 in the wrong
- * state will sometimes get into stupid modes generating 10Khz
- * interrupt streams and the like.
- *
- * We set the interrupt handler up to discard any events, in case
- * we get them during reset or setp.
- *
- * Return 0 for success, or a negative value indicating the problem
- * in errno form.
- */
- int z8530_init(struct z8530_dev *dev)
- {
- unsigned long flags;
- int ret;
- /* Set up the chip level lock */
- spin_lock_init(&dev->lock);
- dev->chanA.lock = &dev->lock;
- dev->chanB.lock = &dev->lock;
- spin_lock_irqsave(&dev->lock, flags);
- ret = do_z8530_init(dev);
- spin_unlock_irqrestore(&dev->lock, flags);
- return ret;
- }
- EXPORT_SYMBOL(z8530_init);
- /**
- * z8530_shutdown - Shutdown a Z8530 device
- * @dev: The Z8530 chip to shutdown
- *
- * We set the interrupt handlers to silence any interrupts. We then
- * reset the chip and wait 100uS to be sure the reset completed. Just
- * in case the caller then tries to do stuff.
- *
- * This is called without the lock held
- */
-
- int z8530_shutdown(struct z8530_dev *dev)
- {
- unsigned long flags;
- /* Reset the chip */
- spin_lock_irqsave(&dev->lock, flags);
- dev->chanA.irqs=&z8530_nop;
- dev->chanB.irqs=&z8530_nop;
- write_zsreg(&dev->chanA, R9, 0xC0);
- /* We must lock the udelay, the chip is offlimits here */
- udelay(100);
- spin_unlock_irqrestore(&dev->lock, flags);
- return 0;
- }
- EXPORT_SYMBOL(z8530_shutdown);
- /**
- * z8530_channel_load - Load channel data
- * @c: Z8530 channel to configure
- * @rtable: table of register, value pairs
- * FIXME: ioctl to allow user uploaded tables
- *
- * Load a Z8530 channel up from the system data. We use +16 to
- * indicate the "prime" registers. The value 255 terminates the
- * table.
- */
- int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
- {
- unsigned long flags;
- spin_lock_irqsave(c->lock, flags);
- while(*rtable!=255)
- {
- int reg=*rtable++;
- if(reg>0x0F)
- write_zsreg(c, R15, c->regs[15]|1);
- write_zsreg(c, reg&0x0F, *rtable);
- if(reg>0x0F)
- write_zsreg(c, R15, c->regs[15]&~1);
- c->regs[reg]=*rtable++;
- }
- c->rx_function=z8530_null_rx;
- c->skb=NULL;
- c->tx_skb=NULL;
- c->tx_next_skb=NULL;
- c->mtu=1500;
- c->max=0;
- c->count=0;
- c->status=read_zsreg(c, R0);
- c->sync=1;
- write_zsreg(c, R3, c->regs[R3]|RxENABLE);
- spin_unlock_irqrestore(c->lock, flags);
- return 0;
- }
- EXPORT_SYMBOL(z8530_channel_load);
- /**
- * z8530_tx_begin - Begin packet transmission
- * @c: The Z8530 channel to kick
- *
- * This is the speed sensitive side of transmission. If we are called
- * and no buffer is being transmitted we commence the next buffer. If
- * nothing is queued we idle the sync.
- *
- * Note: We are handling this code path in the interrupt path, keep it
- * fast or bad things will happen.
- *
- * Called with the lock held.
- */
- static void z8530_tx_begin(struct z8530_channel *c)
- {
- unsigned long flags;
- if(c->tx_skb)
- return;
-
- c->tx_skb=c->tx_next_skb;
- c->tx_next_skb=NULL;
- c->tx_ptr=c->tx_next_ptr;
-
- netif_wake_queue(c->netdevice);
- if(c->tx_skb==NULL)
- {
- /* Idle on */
- if(c->dma_tx)
- {
- flags=claim_dma_lock();
- disable_dma(c->txdma);
- /*
- * Check if we crapped out.
- */
- if(get_dma_residue(c->txdma))
- {
- c->stats.tx_dropped++;
- c->stats.tx_fifo_errors++;
- }
- release_dma_lock(flags);
- }
- c->txcount=0;
- }
- else
- {
- c->txcount=c->tx_skb->len;
-
-
- if(c->dma_tx)
- {
- /*
- * FIXME. DMA is broken for the original 8530,
- * on the older parts we need to set a flag and
- * wait for a further TX interrupt to fire this
- * stage off
- */
-
- flags=claim_dma_lock();
- disable_dma(c->txdma);
- /*
- * These two are needed by the 8530/85C30
- * and must be issued when idling.
- */
-
- if(c->dev->type!=Z85230)
- {
- write_zsctrl(c, RES_Tx_CRC);
- write_zsctrl(c, RES_EOM_L);
- }
- write_zsreg(c, R10, c->regs[10]&~ABUNDER);
- clear_dma_ff(c->txdma);
- set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
- set_dma_count(c->txdma, c->txcount);
- enable_dma(c->txdma);
- release_dma_lock(flags);
- write_zsctrl(c, RES_EOM_L);
- write_zsreg(c, R5, c->regs[R5]|TxENAB);
- }
- else
- {
- /* ABUNDER off */
- write_zsreg(c, R10, c->regs[10]);
- write_zsctrl(c, RES_Tx_CRC);
- //??? write_zsctrl(c, RES_EOM_L);
-
- while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
- {
- write_zsreg(c, R8, *c->tx_ptr++);
- c->txcount--;
- }
- }
- }
- }
- /**
- * z8530_tx_done - TX complete callback
- * @c: The channel that completed a transmit.
- *
- * This is called when we complete a packet send. We wake the queue,
- * start the next packet going and then free the buffer of the existing
- * packet. This code is fairly timing sensitive.
- *
- * Called with the register lock held.
- */
-
- static void z8530_tx_done(struct z8530_channel *c)
- {
- struct sk_buff *skb;
- netif_wake_queue(c->netdevice);
- /* Actually this can happen.*/
- if(c->tx_skb==NULL)
- return;
- skb=c->tx_skb;
- c->tx_skb=NULL;
- z8530_tx_begin(c);
- c->stats.tx_packets++;
- c->stats.tx_bytes+=skb->len;
- dev_kfree_skb_irq(skb);
- }
- /**
- * z8530_null_rx - Discard a packet
- * @c: The channel the packet arrived on
- * @skb: The buffer
- *
- * We point the receive handler at this function when idle. Instead
- * of syncppp processing the frames we get to throw them away.
- */
-
- void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
- {
- dev_kfree_skb_any(skb);
- }
- EXPORT_SYMBOL(z8530_null_rx);
- /**
- * z8530_rx_done - Receive completion callback
- * @c: The channel that completed a receive
- *
- * A new packet is complete. Our goal here is to get back into receive
- * mode as fast as possible. On the Z85230 we could change to using
- * ESCC mode, but on the older chips we have no choice. We flip to the
- * new buffer immediately in DMA mode so that the DMA of the next
- * frame can occur while we are copying the previous buffer to an sk_buff
- *
- * Called with the lock held
- */
-
- static void z8530_rx_done(struct z8530_channel *c)
- {
- struct sk_buff *skb;
- int ct;
-
- /*
- * Is our receive engine in DMA mode
- */
-
- if(c->rxdma_on)
- {
- /*
- * Save the ready state and the buffer currently
- * being used as the DMA target
- */
-
- int ready=c->dma_ready;
- unsigned char *rxb=c->rx_buf[c->dma_num];
- unsigned long flags;
-
- /*
- * Complete this DMA. Neccessary to find the length
- */
-
- flags=claim_dma_lock();
-
- disable_dma(c->rxdma);
- clear_dma_ff(c->rxdma);
- c->rxdma_on=0;
- ct=c->mtu-get_dma_residue(c->rxdma);
- if(ct<0)
- ct=2; /* Shit happens.. */
- c->dma_ready=0;
-
- /*
- * Normal case: the other slot is free, start the next DMA
- * into it immediately.
- */
-
- if(ready)
- {
- c->dma_num^=1;
- set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
- set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
- set_dma_count(c->rxdma, c->mtu);
- c->rxdma_on = 1;
- enable_dma(c->rxdma);
- /* Stop any frames that we missed the head of
- from passing */
- write_zsreg(c, R0, RES_Rx_CRC);
- }
- else
- /* Can't occur as we dont reenable the DMA irq until
- after the flip is done */
- printk(KERN_WARNING "%s: DMA flip overrun!n", c->netdevice->name);
-
- release_dma_lock(flags);
-
- /*
- * Shove the old buffer into an sk_buff. We can't DMA
- * directly into one on a PC - it might be above the 16Mb
- * boundary. Optimisation - we could check to see if we
- * can avoid the copy. Optimisation 2 - make the memcpy
- * a copychecksum.
- */
-
- skb=dev_alloc_skb(ct);
- if(skb==NULL)
- {
- c->stats.rx_dropped++;
- printk(KERN_WARNING "%s: Memory squeeze.n", c->netdevice->name);
- }
- else
- {
- skb_put(skb, ct);
- memcpy(skb->data, rxb, ct);
- c->stats.rx_packets++;
- c->stats.rx_bytes+=ct;
- }
- c->dma_ready=1;
- }
- else
- {
- RT_LOCK;
- skb=c->skb;
-
- /*
- * The game we play for non DMA is similar. We want to
- * get the controller set up for the next packet as fast
- * as possible. We potentially only have one byte + the
- * fifo length for this. Thus we want to flip to the new
- * buffer and then mess around copying and allocating
- * things. For the current case it doesn't matter but
- * if you build a system where the sync irq isnt blocked
- * by the kernel IRQ disable then you need only block the
- * sync IRQ for the RT_LOCK area.
- *
- */
- ct=c->count;
-
- c->skb = c->skb2;
- c->count = 0;
- c->max = c->mtu;
- if(c->skb)
- {
- c->dptr = c->skb->data;
- c->max = c->mtu;
- }
- else
- {
- c->count= 0;
- c->max = 0;
- }
- RT_UNLOCK;
- c->skb2 = dev_alloc_skb(c->mtu);
- if(c->skb2==NULL)
- printk(KERN_WARNING "%s: memory squeeze.n",
- c->netdevice->name);
- else
- {
- skb_put(c->skb2,c->mtu);
- }
- c->stats.rx_packets++;
- c->stats.rx_bytes+=ct;
-
- }
- /*
- * If we received a frame we must now process it.
- */
- if(skb)
- {
- skb_trim(skb, ct);
- c->rx_function(c,skb);
- }
- else
- {
- c->stats.rx_dropped++;
- printk(KERN_ERR "%s: Lost a framen", c->netdevice->name);
- }
- }
- /**
- * spans_boundary - Check a packet can be ISA DMA'd
- * @skb: The buffer to check
- *
- * Returns true if the buffer cross a DMA boundary on a PC. The poor
- * thing can only DMA within a 64K block not across the edges of it.
- */
-
- static inline int spans_boundary(struct sk_buff *skb)
- {
- unsigned long a=(unsigned long)skb->data;
- a^=(a+skb->len);
- if(a&0x00010000) /* If the 64K bit is different.. */
- return 1;
- return 0;
- }
- /**
- * z8530_queue_xmit - Queue a packet
- * @c: The channel to use
- * @skb: The packet to kick down the channel
- *
- * Queue a packet for transmission. Because we have rather
- * hard to hit interrupt latencies for the Z85230 per packet
- * even in DMA mode we do the flip to DMA buffer if needed here
- * not in the IRQ.
- *
- * Called from the network code. The lock is not held at this
- * point.
- */
- int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
- {
- unsigned long flags;
-
- netif_stop_queue(c->netdevice);
- if(c->tx_next_skb)
- {
- return 1;
- }
-
- /* PC SPECIFIC - DMA limits */
-
- /*
- * If we will DMA the transmit and its gone over the ISA bus
- * limit, then copy to the flip buffer
- */
-
- if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
- {
- /*
- * Send the flip buffer, and flip the flippy bit.
- * We don't care which is used when just so long as
- * we never use the same buffer twice in a row. Since
- * only one buffer can be going out at a time the other
- * has to be safe.
- */
- c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
- c->tx_dma_used^=1; /* Flip temp buffer */
- memcpy(c->tx_next_ptr, skb->data, skb->len);
- }
- else
- c->tx_next_ptr=skb->data;
- RT_LOCK;
- c->tx_next_skb=skb;
- RT_UNLOCK;
-
- spin_lock_irqsave(c->lock, flags);
- z8530_tx_begin(c);
- spin_unlock_irqrestore(c->lock, flags);
-
- netif_wake_queue(c->netdevice);
- return 0;
- }
- EXPORT_SYMBOL(z8530_queue_xmit);
- /**
- * z8530_get_stats - Get network statistics
- * @c: The channel to use
- *
- * Get the statistics block. We keep the statistics in software as
- * the chip doesn't do it for us.
- *
- * Locking is ignored here - we could lock for a copy but its
- * not likely to be that big an issue
- */
-
- struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
- {
- return &c->stats;
- }
- EXPORT_SYMBOL(z8530_get_stats);
- /*
- * Module support
- */
- static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02n";
- static int __init z85230_init_driver(void)
- {
- printk(banner);
- return 0;
- }
- module_init(z85230_init_driver);
- static void __exit z85230_cleanup_driver(void)
- {
- }
- module_exit(z85230_cleanup_driver);
- MODULE_AUTHOR("Red Hat Inc.");
- MODULE_DESCRIPTION("Z85x30 synchronous driver core");
- MODULE_LICENSE("GPL");