sb1000.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:34k
源码类别:

嵌入式Linux

开发平台:

Unix_Linux

  1. /* sb1000.c: A General Instruments SB1000 driver for linux. */
  2. /*
  3. Written 1998 by Franco Venturi.
  4. Copyright 1998 by Franco Venturi.
  5. Copyright 1994,1995 by Donald Becker.
  6. Copyright 1993 United States Government as represented by the
  7. Director, National Security Agency.
  8. This driver is for the General Instruments SB1000 (internal SURFboard)
  9. The author may be reached as fventuri@mediaone.net
  10. This program is free software; you can redistribute it
  11. and/or  modify it under  the terms of  the GNU General
  12. Public  License as  published  by  the  Free  Software
  13. Foundation;  either  version 2 of the License, or  (at
  14. your option) any later version.
  15. Changes:
  16. 981115 Steven Hirsch <shirsch@adelphia.net>
  17. Linus changed the timer interface.  Should work on all recent
  18. development kernels.
  19. 980608 Steven Hirsch <shirsch@adelphia.net>
  20. Small changes to make it work with 2.1.x kernels. Hopefully,
  21. nothing major will change before official release of Linux 2.2.
  22. Merged with 2.2 - Alan Cox
  23. */
  24. static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)n";
  25. #include <linux/module.h>
  26. #include <linux/version.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/string.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/errno.h>
  33. #include <linux/in.h>
  34. #include <linux/slab.h>
  35. #include <linux/ioport.h>
  36. #include <linux/netdevice.h>
  37. #include <linux/if_arp.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h> /* for udelay() */
  40. #include <asm/processor.h>
  41. #include <asm/bitops.h>
  42. #include <asm/io.h>
  43. #include <asm/uaccess.h>
  44. #include <linux/etherdevice.h>
  45. #include <linux/isapnp.h>
  46. /* for SIOGCM/SIOSCM stuff */
  47. #include <linux/if_cablemodem.h>
  48. #ifdef SB1000_DEBUG
  49. int sb1000_debug = SB1000_DEBUG;
  50. #else
  51. int sb1000_debug = 1;
  52. #endif
  53. static const int SB1000_IO_EXTENT = 8;
  54. /* SB1000 Maximum Receive Unit */
  55. static const int SB1000_MRU = 1500; /* octects */
  56. #define NPIDS 4
  57. struct sb1000_private {
  58. struct sk_buff *rx_skb[NPIDS];
  59. short rx_dlen[NPIDS];
  60. unsigned int rx_frames;
  61. short rx_error_count;
  62. short rx_error_dpc_count;
  63. unsigned char rx_session_id[NPIDS];
  64. unsigned char rx_frame_id[NPIDS];
  65. unsigned char rx_pkt_type[NPIDS];
  66. struct net_device_stats stats;
  67. };
  68. /* prototypes for Linux interface */
  69. extern int sb1000_probe(struct net_device *dev);
  70. static int sb1000_open(struct net_device *dev);
  71. static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
  72. static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
  73. static void sb1000_interrupt(int irq, void *dev_id, struct pt_regs *regs);
  74. static struct net_device_stats *sb1000_stats(struct net_device *dev);
  75. static int sb1000_close(struct net_device *dev);
  76. /* SB1000 hardware routines to be used during open/configuration phases */
  77. static inline void nicedelay(unsigned long usecs);
  78. static inline int card_wait_for_busy_clear(const int ioaddr[],
  79. const char* name);
  80. static inline int card_wait_for_ready(const int ioaddr[], const char* name,
  81. unsigned char in[]);
  82. static inline int card_send_command(const int ioaddr[], const char* name,
  83. const unsigned char out[], unsigned char in[]);
  84. /* SB1000 hardware routines to be used during frame rx interrupt */
  85. static inline int sb1000_wait_for_ready(const int ioaddr[], const char* name);
  86. static inline int sb1000_wait_for_ready_clear(const int ioaddr[],
  87. const char* name);
  88. static inline void sb1000_send_command(const int ioaddr[], const char* name,
  89. const unsigned char out[]);
  90. static inline void sb1000_read_status(const int ioaddr[], unsigned char in[]);
  91. static inline void sb1000_issue_read_command(const int ioaddr[],
  92. const char* name);
  93. /* SB1000 commands for open/configuration */
  94. static inline int sb1000_reset(const int ioaddr[], const char* name);
  95. static inline int sb1000_check_CRC(const int ioaddr[], const char* name);
  96. static inline int sb1000_start_get_set_command(const int ioaddr[],
  97. const char* name);
  98. static inline int sb1000_end_get_set_command(const int ioaddr[],
  99. const char* name);
  100. static inline int sb1000_activate(const int ioaddr[], const char* name);
  101. static inline int sb1000_get_firmware_version(const int ioaddr[],
  102. const char* name, unsigned char version[], int do_end);
  103. static inline int sb1000_get_frequency(const int ioaddr[], const char* name,
  104. int* frequency);
  105. static inline int sb1000_set_frequency(const int ioaddr[], const char* name,
  106. int frequency);
  107. static inline int sb1000_get_PIDs(const int ioaddr[], const char* name,
  108. short PID[]);
  109. static inline int sb1000_set_PIDs(const int ioaddr[], const char* name,
  110. const short PID[]);
  111. /* SB1000 commands for frame rx interrupt */
  112. static inline int sb1000_rx(struct net_device *dev);
  113. static inline void sb1000_error_dpc(struct net_device *dev);
  114. static struct isapnp_device_id id_table[] = {
  115. { ISAPNP_ANY_ID, ISAPNP_ANY_ID,
  116. ISAPNP_VENDOR('G','I','C'), ISAPNP_FUNCTION(0x1000), 0 },
  117. {0}
  118. };
  119. MODULE_DEVICE_TABLE(isapnp, id_table);
  120. /* probe for SB1000 using Plug-n-Play mechanism */
  121. int
  122. sb1000_probe(struct net_device *dev)
  123. {
  124. unsigned short ioaddr[2], irq;
  125. struct pci_dev *idev=NULL;
  126. unsigned int serial_number;
  127. while(1)
  128. {
  129. /*
  130.  * Find the card
  131.  */
  132.  
  133. idev=isapnp_find_dev(NULL, ISAPNP_VENDOR('G','I','C'),
  134. ISAPNP_FUNCTION(0x1000), idev);
  135. /*
  136.  * No card
  137.  */
  138.  
  139. if(idev==NULL)
  140. return -ENODEV;
  141. /*
  142.  * Bring it online
  143.  */
  144.  
  145. idev->prepare(idev);
  146. idev->activate(idev);
  147. /*
  148.  * Ports free ?
  149.  */
  150.  
  151. if(!idev->resource[0].start || check_region(idev->resource[0].start, 16))
  152. continue;
  153. if(!idev->resource[1].start || check_region(idev->resource[1].start, 16))
  154. continue;
  155. serial_number = idev->bus->serial;
  156. ioaddr[0]=idev->resource[0].start;
  157. ioaddr[1]=idev->resource[1].start;
  158. irq = idev->irq_resource[0].start;
  159. /* check I/O base and IRQ */
  160. if (dev->base_addr != 0 && dev->base_addr != ioaddr[0])
  161. continue;
  162. if (dev->rmem_end != 0 && dev->rmem_end != ioaddr[1])
  163. continue;
  164. if (dev->irq != 0 && dev->irq != irq)
  165. continue;
  166. /*
  167.  * Ok set it up.
  168.  */
  169.  
  170.  
  171. dev->base_addr = ioaddr[0];
  172. /* rmem_end holds the second I/O address - fv */
  173. dev->rmem_end = ioaddr[1];
  174. dev->irq = irq;
  175. if (sb1000_debug > 0)
  176. printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
  177. "S/N %#8.8x, IRQ %d.n", dev->name, dev->base_addr,
  178. dev->rmem_end, serial_number, dev->irq);
  179. dev = init_etherdev(dev, 0);
  180. if (!dev)
  181. return -ENOMEM;
  182. SET_MODULE_OWNER(dev);
  183. /* Make up a SB1000-specific-data structure. */
  184. dev->priv = kmalloc(sizeof(struct sb1000_private), GFP_KERNEL);
  185. if (dev->priv == NULL)
  186. return -ENOMEM;
  187. memset(dev->priv, 0, sizeof(struct sb1000_private));
  188. if (sb1000_debug > 0)
  189. printk(KERN_NOTICE "%s", version);
  190. /* The SB1000-specific entries in the device structure. */
  191. dev->open = sb1000_open;
  192. dev->do_ioctl = sb1000_dev_ioctl;
  193. dev->hard_start_xmit = sb1000_start_xmit;
  194. dev->stop = sb1000_close;
  195. dev->get_stats = sb1000_stats;
  196. /* Fill in the generic fields of the device structure. */
  197. dev->change_mtu = NULL;
  198. dev->hard_header = NULL;
  199. dev->rebuild_header  = NULL;
  200. dev->set_mac_address  = NULL;
  201. dev->header_cache_update= NULL;
  202. dev->type = ARPHRD_ETHER;
  203. dev->hard_header_len  = 0;
  204. dev->mtu = 1500;
  205. dev->addr_len = ETH_ALEN;
  206. /* hardware address is 0:0:serial_number */
  207. dev->dev_addr[0] = 0;
  208. dev->dev_addr[1] = 0;
  209. dev->dev_addr[2] = serial_number >> 24 & 0xff;
  210. dev->dev_addr[3] = serial_number >> 16 & 0xff;
  211. dev->dev_addr[4] = serial_number >>  8 & 0xff;
  212. dev->dev_addr[5] = serial_number >>  0 & 0xff;
  213. dev->tx_queue_len = 0;
  214. /* New-style flags. */
  215. dev->flags = IFF_POINTOPOINT|IFF_NOARP;
  216. /* Lock resources */
  217. request_region(ioaddr[0], 16, dev->name);
  218. request_region(ioaddr[1], 16, dev->name);
  219. return 0;
  220. }
  221. }
  222. /*
  223.  * SB1000 hardware routines to be used during open/configuration phases
  224.  */
  225. const int TimeOutJiffies = (int)(8.75 * HZ);
  226. static inline void nicedelay(unsigned long usecs)
  227. {
  228. current->state = TASK_INTERRUPTIBLE;
  229. schedule_timeout(HZ);
  230. return;
  231. }
  232. /* Card Wait For Busy Clear (cannot be used during an interrupt) */
  233. static inline int
  234. card_wait_for_busy_clear(const int ioaddr[], const char* name)
  235. {
  236. unsigned char a;
  237. unsigned long timeout;
  238. a = inb(ioaddr[0] + 7);
  239. timeout = jiffies + TimeOutJiffies;
  240. while (a & 0x80 || a & 0x40) {
  241. /* a little sleep */
  242. current->state = TASK_INTERRUPTIBLE;
  243. schedule_timeout(0);
  244. a = inb(ioaddr[0] + 7);
  245. if (jiffies >= timeout) {
  246. printk(KERN_WARNING "%s: card_wait_for_busy_clear timeoutn",
  247. name);
  248. return -ETIME;
  249. }
  250. }
  251. return 0;
  252. }
  253. /* Card Wait For Ready (cannot be used during an interrupt) */
  254. static inline int
  255. card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
  256. {
  257. unsigned char a;
  258. unsigned long timeout;
  259. a = inb(ioaddr[1] + 6);
  260. timeout = jiffies + TimeOutJiffies;
  261. while (a & 0x80 || !(a & 0x40)) {
  262. /* a little sleep */
  263. current->state = TASK_INTERRUPTIBLE;
  264. schedule_timeout(0);
  265. a = inb(ioaddr[1] + 6);
  266. if (jiffies >= timeout) {
  267. printk(KERN_WARNING "%s: card_wait_for_ready timeoutn",
  268. name);
  269. return -ETIME;
  270. }
  271. }
  272. in[1] = inb(ioaddr[0] + 1);
  273. in[2] = inb(ioaddr[0] + 2);
  274. in[3] = inb(ioaddr[0] + 3);
  275. in[4] = inb(ioaddr[0] + 4);
  276. in[0] = inb(ioaddr[0] + 5);
  277. in[6] = inb(ioaddr[0] + 6);
  278. in[5] = inb(ioaddr[1] + 6);
  279. return 0;
  280. }
  281. /* Card Send Command (cannot be used during an interrupt) */
  282. static inline int
  283. card_send_command(const int ioaddr[], const char* name,
  284. const unsigned char out[], unsigned char in[])
  285. {
  286. int status, x;
  287. if ((status = card_wait_for_busy_clear(ioaddr, name)))
  288. return status;
  289. outb(0xa0, ioaddr[0] + 6);
  290. outb(out[2], ioaddr[0] + 1);
  291. outb(out[3], ioaddr[0] + 2);
  292. outb(out[4], ioaddr[0] + 3);
  293. outb(out[5], ioaddr[0] + 4);
  294. outb(out[1], ioaddr[0] + 5);
  295. outb(0xa0, ioaddr[0] + 6);
  296. outb(out[0], ioaddr[0] + 7);
  297. if (out[0] != 0x20 && out[0] != 0x30) {
  298. if ((status = card_wait_for_ready(ioaddr, name, in)))
  299. return status;
  300. inb(ioaddr[0] + 7);
  301. if (sb1000_debug > 3)
  302. printk(KERN_DEBUG "%s: card_send_command "
  303. "out: %02x%02x%02x%02x%02x%02x  "
  304. "in: %02x%02x%02x%02x%02x%02x%02xn", name,
  305. out[0], out[1], out[2], out[3], out[4], out[5],
  306. in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
  307. } else {
  308. if (sb1000_debug > 3)
  309. printk(KERN_DEBUG "%s: card_send_command "
  310. "out: %02x%02x%02x%02x%02x%02xn", name,
  311. out[0], out[1], out[2], out[3], out[4], out[5]);
  312. }
  313. if (out[1] == 0x1b) {
  314. x = (out[2] == 0x02);
  315. } else {
  316. if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
  317. return -EIO;
  318. }
  319. return 0;
  320. }
  321. /*
  322.  * SB1000 hardware routines to be used during frame rx interrupt
  323.  */
  324. const int Sb1000TimeOutJiffies = 7 * HZ;
  325. /* Card Wait For Ready (to be used during frame rx) */
  326. static inline int
  327. sb1000_wait_for_ready(const int ioaddr[], const char* name)
  328. {
  329. unsigned long timeout;
  330. timeout = jiffies + Sb1000TimeOutJiffies;
  331. while (inb(ioaddr[1] + 6) & 0x80) {
  332. if (jiffies >= timeout) {
  333. printk(KERN_WARNING "%s: sb1000_wait_for_ready timeoutn",
  334. name);
  335. return -ETIME;
  336. }
  337. }
  338. timeout = jiffies + Sb1000TimeOutJiffies;
  339. while (!(inb(ioaddr[1] + 6) & 0x40)) {
  340. if (jiffies >= timeout) {
  341. printk(KERN_WARNING "%s: sb1000_wait_for_ready timeoutn",
  342. name);
  343. return -ETIME;
  344. }
  345. }
  346. inb(ioaddr[0] + 7);
  347. return 0;
  348. }
  349. /* Card Wait For Ready Clear (to be used during frame rx) */
  350. static inline int
  351. sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
  352. {
  353. unsigned long timeout;
  354. timeout = jiffies + Sb1000TimeOutJiffies;
  355. while (inb(ioaddr[1] + 6) & 0x80) {
  356. if (jiffies >= timeout) {
  357. printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeoutn",
  358. name);
  359. return -ETIME;
  360. }
  361. }
  362. timeout = jiffies + Sb1000TimeOutJiffies;
  363. while (inb(ioaddr[1] + 6) & 0x40) {
  364. if (jiffies >= timeout) {
  365. printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeoutn",
  366. name);
  367. return -ETIME;
  368. }
  369. }
  370. return 0;
  371. }
  372. /* Card Send Command (to be used during frame rx) */
  373. static inline void
  374. sb1000_send_command(const int ioaddr[], const char* name,
  375. const unsigned char out[])
  376. {
  377. outb(out[2], ioaddr[0] + 1);
  378. outb(out[3], ioaddr[0] + 2);
  379. outb(out[4], ioaddr[0] + 3);
  380. outb(out[5], ioaddr[0] + 4);
  381. outb(out[1], ioaddr[0] + 5);
  382. outb(out[0], ioaddr[0] + 7);
  383. if (sb1000_debug > 3)
  384. printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
  385. "%02x%02xn", name, out[0], out[1], out[2], out[3], out[4], out[5]);
  386. return;
  387. }
  388. /* Card Read Status (to be used during frame rx) */
  389. static inline void
  390. sb1000_read_status(const int ioaddr[], unsigned char in[])
  391. {
  392. in[1] = inb(ioaddr[0] + 1);
  393. in[2] = inb(ioaddr[0] + 2);
  394. in[3] = inb(ioaddr[0] + 3);
  395. in[4] = inb(ioaddr[0] + 4);
  396. in[0] = inb(ioaddr[0] + 5);
  397. return;
  398. }
  399. /* Issue Read Command (to be used during frame rx) */
  400. static inline void
  401. sb1000_issue_read_command(const int ioaddr[], const char* name)
  402. {
  403. const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
  404. sb1000_wait_for_ready_clear(ioaddr, name);
  405. outb(0xa0, ioaddr[0] + 6);
  406. sb1000_send_command(ioaddr, name, Command0);
  407. return;
  408. }
  409. /*
  410.  * SB1000 commands for open/configuration
  411.  */
  412. /* reset SB1000 card */
  413. static inline int
  414. sb1000_reset(const int ioaddr[], const char* name)
  415. {
  416. unsigned char st[7];
  417. int port, status;
  418. const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
  419. port = ioaddr[1] + 6;
  420. outb(0x4, port);
  421. inb(port);
  422. udelay(1000);
  423. outb(0x0, port);
  424. inb(port);
  425. nicedelay(60000);
  426. outb(0x4, port);
  427. inb(port);
  428. udelay(1000);
  429. outb(0x0, port);
  430. inb(port);
  431. udelay(0);
  432. if ((status = card_send_command(ioaddr, name, Command0, st)))
  433. return status;
  434. if (st[3] != 0xf0)
  435. return -EIO;
  436. return 0;
  437. }
  438. /* check SB1000 firmware CRC */
  439. static inline int
  440. sb1000_check_CRC(const int ioaddr[], const char* name)
  441. {
  442. unsigned char st[7];
  443. int crc, status;
  444. const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
  445. /* check CRC */
  446. if ((status = card_send_command(ioaddr, name, Command0, st)))
  447. return status;
  448. if (st[1] != st[3] || st[2] != st[4])
  449. return -EIO;
  450. crc = st[1] << 8 | st[2];
  451. return 0;
  452. }
  453. static inline int
  454. sb1000_start_get_set_command(const int ioaddr[], const char* name)
  455. {
  456. unsigned char st[7];
  457. const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
  458. return card_send_command(ioaddr, name, Command0, st);
  459. }
  460. static inline int
  461. sb1000_end_get_set_command(const int ioaddr[], const char* name)
  462. {
  463. unsigned char st[7];
  464. int status;
  465. const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
  466. const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
  467. if ((status = card_send_command(ioaddr, name, Command0, st)))
  468. return status;
  469. return card_send_command(ioaddr, name, Command1, st);
  470. }
  471. static inline int
  472. sb1000_activate(const int ioaddr[], const char* name)
  473. {
  474. unsigned char st[7];
  475. int status;
  476. const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
  477. const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
  478. nicedelay(50000);
  479. if ((status = card_send_command(ioaddr, name, Command0, st)))
  480. return status;
  481. if ((status = card_send_command(ioaddr, name, Command1, st)))
  482. return status;
  483. if (st[3] != 0xf1) {
  484.      if ((status = sb1000_start_get_set_command(ioaddr, name)))
  485. return status;
  486. return -EIO;
  487. }
  488. udelay(1000);
  489.     return sb1000_start_get_set_command(ioaddr, name);
  490. }
  491. /* get SB1000 firmware version */
  492. static inline int
  493. sb1000_get_firmware_version(const int ioaddr[], const char* name,
  494. unsigned char version[], int do_end)
  495. {
  496. unsigned char st[7];
  497. int status;
  498. const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
  499. if ((status = sb1000_start_get_set_command(ioaddr, name)))
  500. return status;
  501. if ((status = card_send_command(ioaddr, name, Command0, st)))
  502. return status;
  503. if (st[0] != 0xa3)
  504. return -EIO;
  505. version[0] = st[1];
  506. version[1] = st[2];
  507. if (do_end)
  508. return sb1000_end_get_set_command(ioaddr, name);
  509. else
  510. return 0;
  511. }
  512. /* get SB1000 frequency */
  513. static inline int
  514. sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
  515. {
  516. unsigned char st[7];
  517. int status;
  518. const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
  519. udelay(1000);
  520. if ((status = sb1000_start_get_set_command(ioaddr, name)))
  521. return status;
  522. if ((status = card_send_command(ioaddr, name, Command0, st)))
  523. return status;
  524. *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
  525. return sb1000_end_get_set_command(ioaddr, name);
  526. }
  527. /* set SB1000 frequency */
  528. static inline int
  529. sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
  530. {
  531. unsigned char st[7];
  532. int status;
  533. unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
  534. const int FrequencyLowerLimit = 57000;
  535. const int FrequencyUpperLimit = 804000;
  536. if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
  537. printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
  538. "[%d,%d] kHzn", name, frequency, FrequencyLowerLimit,
  539. FrequencyUpperLimit);
  540. return -EINVAL;
  541. }
  542. udelay(1000);
  543. if ((status = sb1000_start_get_set_command(ioaddr, name)))
  544. return status;
  545. Command0[5] = frequency & 0xff;
  546. frequency >>= 8;
  547. Command0[4] = frequency & 0xff;
  548. frequency >>= 8;
  549. Command0[3] = frequency & 0xff;
  550. frequency >>= 8;
  551. Command0[2] = frequency & 0xff;
  552. return card_send_command(ioaddr, name, Command0, st);
  553. }
  554. /* get SB1000 PIDs */
  555. static inline int
  556. sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
  557. {
  558. unsigned char st[7];
  559. int status;
  560. const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
  561. const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
  562. const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
  563. const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
  564. udelay(1000);
  565. if ((status = sb1000_start_get_set_command(ioaddr, name)))
  566. return status;
  567. if ((status = card_send_command(ioaddr, name, Command0, st)))
  568. return status;
  569. PID[0] = st[1] << 8 | st[2];
  570. if ((status = card_send_command(ioaddr, name, Command1, st)))
  571. return status;
  572. PID[1] = st[1] << 8 | st[2];
  573. if ((status = card_send_command(ioaddr, name, Command2, st)))
  574. return status;
  575. PID[2] = st[1] << 8 | st[2];
  576. if ((status = card_send_command(ioaddr, name, Command3, st)))
  577. return status;
  578. PID[3] = st[1] << 8 | st[2];
  579. return sb1000_end_get_set_command(ioaddr, name);
  580. }
  581. /* set SB1000 PIDs */
  582. static inline int
  583. sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
  584. {
  585. unsigned char st[7];
  586. short p;
  587. int status;
  588. unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
  589. unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
  590. unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
  591. unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
  592. const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
  593. udelay(1000);
  594. if ((status = sb1000_start_get_set_command(ioaddr, name)))
  595. return status;
  596. p = PID[0];
  597. Command0[3] = p & 0xff;
  598. p >>= 8;
  599. Command0[2] = p & 0xff;
  600. if ((status = card_send_command(ioaddr, name, Command0, st)))
  601. return status;
  602. p = PID[1];
  603. Command1[3] = p & 0xff;
  604. p >>= 8;
  605. Command1[2] = p & 0xff;
  606. if ((status = card_send_command(ioaddr, name, Command1, st)))
  607. return status;
  608. p = PID[2];
  609. Command2[3] = p & 0xff;
  610. p >>= 8;
  611. Command2[2] = p & 0xff;
  612. if ((status = card_send_command(ioaddr, name, Command2, st)))
  613. return status;
  614. p = PID[3];
  615. Command3[3] = p & 0xff;
  616. p >>= 8;
  617. Command3[2] = p & 0xff;
  618. if ((status = card_send_command(ioaddr, name, Command3, st)))
  619. return status;
  620. if ((status = card_send_command(ioaddr, name, Command4, st)))
  621. return status;
  622. return sb1000_end_get_set_command(ioaddr, name);
  623. }
  624. static inline void
  625. sb1000_print_status_buffer(const char* name, unsigned char st[],
  626. unsigned char buffer[], int size)
  627. {
  628. int i, j, k;
  629. printk(KERN_DEBUG "%s: status: %02x %02xn", name, st[0], st[1]);
  630. if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
  631. printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
  632. "to %d.%d.%d.%d:%dn", name, buffer[28] << 8 | buffer[29],
  633. buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
  634.             buffer[46] << 8 | buffer[47],
  635. buffer[42], buffer[43], buffer[44], buffer[45],
  636.             buffer[48] << 8 | buffer[49]);
  637. } else {
  638. for (i = 0, k = 0; i < (size + 7) / 8; i++) {
  639. printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
  640. for (j = 0; j < 8 && k < size; j++, k++)
  641. printk(" %02x", buffer[k]);
  642. printk("n");
  643. }
  644. }
  645. return;
  646. }
  647. /*
  648.  * SB1000 commands for frame rx interrupt
  649.  */
  650. /* receive a single frame and assemble datagram
  651.  * (this is the heart of the interrupt routine)
  652.  */
  653. static inline int
  654. sb1000_rx(struct net_device *dev)
  655. {
  656. #define FRAMESIZE 184
  657. unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
  658. short dlen;
  659. int ioaddr, ns;
  660. unsigned int skbsize;
  661. struct sk_buff *skb;
  662. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  663. struct net_device_stats *stats = &lp->stats;
  664. /* SB1000 frame constants */
  665. const int FrameSize = FRAMESIZE;
  666. const int NewDatagramHeaderSkip = 8;
  667. const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
  668. const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
  669. const int ContDatagramHeaderSkip = 7;
  670. const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
  671. const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
  672. const int TrailerSize = 4;
  673. ioaddr = dev->base_addr;
  674. insw(ioaddr, (unsigned short*) st, 1);
  675. #ifdef XXXDEBUG
  676. printk("cm0: received: %02x %02xn", st[0], st[1]);
  677. #endif /* XXXDEBUG */
  678. lp->rx_frames++;
  679. /* decide if it is a good or bad frame */
  680. for (ns = 0; ns < NPIDS; ns++) {
  681. session_id = lp->rx_session_id[ns];
  682. frame_id = lp->rx_frame_id[ns];
  683. if (st[0] == session_id) {
  684. if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
  685. goto good_frame;
  686. } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
  687. goto skipped_frame;
  688. } else {
  689. goto bad_frame;
  690. }
  691. } else if (st[0] == (session_id | 0x40)) {
  692. if ((st[1] & 0xf0) == 0x30) {
  693. goto skipped_frame;
  694. } else {
  695. goto bad_frame;
  696. }
  697. }
  698. }
  699. goto bad_frame;
  700. skipped_frame:
  701. stats->rx_frame_errors++;
  702. skb = lp->rx_skb[ns];
  703. if (sb1000_debug > 1)
  704. printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
  705. "expecting %02x %02xn", dev->name, st[0], st[1],
  706. skb ? session_id : session_id | 0x40, frame_id);
  707. if (skb) {
  708. dev_kfree_skb(skb);
  709. skb = 0;
  710. }
  711. good_frame:
  712. lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
  713. /* new datagram */
  714. if (st[0] & 0x40) {
  715. /* get data length */
  716. insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
  717. #ifdef XXXDEBUG
  718. printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02xn", buffer[30], buffer[31], buffer[32], buffer[33]);
  719. #endif /* XXXDEBUG */
  720. if (buffer[0] != NewDatagramHeaderSkip) {
  721. if (sb1000_debug > 1)
  722. printk(KERN_WARNING "%s: new datagram header skip error: "
  723. "got %02x expecting %02xn", dev->name, buffer[0],
  724. NewDatagramHeaderSkip);
  725. stats->rx_length_errors++;
  726. insw(ioaddr, buffer, NewDatagramDataSize / 2);
  727. goto bad_frame_next;
  728. }
  729. dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
  730. buffer[NewDatagramHeaderSkip + 4]) - 17;
  731. if (dlen > SB1000_MRU) {
  732. if (sb1000_debug > 1)
  733. printk(KERN_WARNING "%s: datagram length (%d) greater "
  734. "than MRU (%d)n", dev->name, dlen, SB1000_MRU);
  735. stats->rx_length_errors++;
  736. insw(ioaddr, buffer, NewDatagramDataSize / 2);
  737. goto bad_frame_next;
  738. }
  739. lp->rx_dlen[ns] = dlen;
  740. /* compute size to allocate for datagram */
  741. skbsize = dlen + FrameSize;
  742. if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
  743. if (sb1000_debug > 1)
  744. printk(KERN_WARNING "%s: can't allocate %d bytes long "
  745. "skbuffn", dev->name, skbsize);
  746. stats->rx_dropped++;
  747. insw(ioaddr, buffer, NewDatagramDataSize / 2);
  748. goto dropped_frame;
  749. }
  750. skb->dev = dev;
  751. skb->mac.raw = skb->data;
  752. skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
  753. insw(ioaddr, skb_put(skb, NewDatagramDataSize),
  754. NewDatagramDataSize / 2);
  755. lp->rx_skb[ns] = skb;
  756. } else {
  757. /* continuation of previous datagram */
  758. insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
  759. if (buffer[0] != ContDatagramHeaderSkip) {
  760. if (sb1000_debug > 1)
  761. printk(KERN_WARNING "%s: cont datagram header skip error: "
  762. "got %02x expecting %02xn", dev->name, buffer[0],
  763. ContDatagramHeaderSkip);
  764. stats->rx_length_errors++;
  765. insw(ioaddr, buffer, ContDatagramDataSize / 2);
  766. goto bad_frame_next;
  767. }
  768. skb = lp->rx_skb[ns];
  769. insw(ioaddr, skb_put(skb, ContDatagramDataSize),
  770. ContDatagramDataSize / 2);
  771. dlen = lp->rx_dlen[ns];
  772. }
  773. if (skb->len < dlen + TrailerSize) {
  774. lp->rx_session_id[ns] &= ~0x40;
  775. return 0;
  776. }
  777. /* datagram completed: send to upper level */
  778. skb_trim(skb, dlen);
  779. netif_rx(skb);
  780. dev->last_rx = jiffies;
  781. stats->rx_bytes+=dlen;
  782. stats->rx_packets++;
  783. lp->rx_skb[ns] = 0;
  784. lp->rx_session_id[ns] |= 0x40;
  785. return 0;
  786. bad_frame:
  787. insw(ioaddr, buffer, FrameSize / 2);
  788. if (sb1000_debug > 1)
  789. printk(KERN_WARNING "%s: frame error: got %02x %02xn",
  790. dev->name, st[0], st[1]);
  791. stats->rx_frame_errors++;
  792. bad_frame_next:
  793. if (sb1000_debug > 2)
  794. sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
  795. dropped_frame:
  796. stats->rx_errors++;
  797. if (ns < NPIDS) {
  798. if ((skb = lp->rx_skb[ns])) {
  799. dev_kfree_skb(skb);
  800. lp->rx_skb[ns] = 0;
  801. }
  802. lp->rx_session_id[ns] |= 0x40;
  803. }
  804. return -1;
  805. }
  806. static inline void
  807. sb1000_error_dpc(struct net_device *dev)
  808. {
  809. char *name;
  810. unsigned char st[5];
  811. int ioaddr[2];
  812. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  813. const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
  814. const int ErrorDpcCounterInitialize = 200;
  815. ioaddr[0] = dev->base_addr;
  816. /* rmem_end holds the second I/O address - fv */
  817. ioaddr[1] = dev->rmem_end;
  818. name = dev->name;
  819. sb1000_wait_for_ready_clear(ioaddr, name);
  820. sb1000_send_command(ioaddr, name, Command0);
  821. sb1000_wait_for_ready(ioaddr, name);
  822. sb1000_read_status(ioaddr, st);
  823. if (st[1] & 0x10)
  824. lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
  825. return;
  826. }
  827. /*
  828.  * Linux interface functions
  829.  */
  830. static int
  831. sb1000_open(struct net_device *dev)
  832. {
  833. char *name;
  834. int ioaddr[2], status;
  835. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  836. const unsigned short FirmwareVersion[] = {0x01, 0x01};
  837. ioaddr[0] = dev->base_addr;
  838. /* rmem_end holds the second I/O address - fv */
  839. ioaddr[1] = dev->rmem_end;
  840. name = dev->name;
  841. request_region(ioaddr[0], SB1000_IO_EXTENT, "sb1000");
  842. request_region(ioaddr[1], SB1000_IO_EXTENT, "sb1000");
  843. /* initialize sb1000 */
  844. if ((status = sb1000_reset(ioaddr, name)))
  845. return status;
  846. nicedelay(200000);
  847. if ((status = sb1000_check_CRC(ioaddr, name)))
  848. return status;
  849. /* initialize private data before board can catch interrupts */
  850. lp->rx_skb[0] = NULL;
  851. lp->rx_skb[1] = NULL;
  852. lp->rx_skb[2] = NULL;
  853. lp->rx_skb[3] = NULL;
  854. lp->rx_dlen[0] = 0;
  855. lp->rx_dlen[1] = 0;
  856. lp->rx_dlen[2] = 0;
  857. lp->rx_dlen[3] = 0;
  858. lp->rx_frames = 0;
  859. lp->rx_error_count = 0;
  860. lp->rx_error_dpc_count = 0;
  861. lp->rx_session_id[0] = 0x50;
  862. lp->rx_session_id[0] = 0x48;
  863. lp->rx_session_id[0] = 0x44;
  864. lp->rx_session_id[0] = 0x42;
  865. lp->rx_frame_id[0] = 0;
  866. lp->rx_frame_id[1] = 0;
  867. lp->rx_frame_id[2] = 0;
  868. lp->rx_frame_id[3] = 0;
  869. if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) {
  870. return -EAGAIN;
  871. }
  872. if (sb1000_debug > 2)
  873. printk(KERN_DEBUG "%s: Opening, IRQ %dn", name, dev->irq);
  874. /* Activate board and check firmware version */
  875. udelay(1000);
  876. if ((status = sb1000_activate(ioaddr, name)))
  877. return status;
  878. udelay(0);
  879. if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
  880. return status;
  881. if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
  882. printk(KERN_WARNING "%s: found firmware version %x.%02x "
  883. "(should be %x.%02x)n", name, version[0], version[1],
  884. FirmwareVersion[0], FirmwareVersion[1]);
  885. netif_start_queue(dev);
  886. return 0; /* Always succeed */
  887. }
  888. static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  889. {
  890. char* name;
  891. unsigned char version[2];
  892. short PID[4];
  893. int ioaddr[2], status, frequency;
  894. unsigned int stats[5];
  895. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  896. if (!(dev && dev->flags & IFF_UP))
  897. return -ENODEV;
  898. ioaddr[0] = dev->base_addr;
  899. /* rmem_end holds the second I/O address - fv */
  900. ioaddr[1] = dev->rmem_end;
  901. name = dev->name;
  902. switch (cmd) {
  903. case SIOCGCMSTATS: /* get statistics */
  904. stats[0] = lp->stats.rx_bytes;
  905. stats[1] = lp->rx_frames;
  906. stats[2] = lp->stats.rx_packets;
  907. stats[3] = lp->stats.rx_errors;
  908. stats[4] = lp->stats.rx_dropped;
  909. if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
  910. return -EFAULT;
  911. status = 0;
  912. break;
  913. case SIOCGCMFIRMWARE: /* get firmware version */
  914. if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
  915. return status;
  916. if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
  917. return -EFAULT;
  918. break;
  919. case SIOCGCMFREQUENCY: /* get frequency */
  920. if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
  921. return status;
  922. if(put_user(frequency, (int*) ifr->ifr_data))
  923. return -EFAULT;
  924. break;
  925. case SIOCSCMFREQUENCY: /* set frequency */
  926. if (!capable(CAP_NET_ADMIN))
  927. return -EPERM;
  928. if(get_user(frequency, (int*) ifr->ifr_data))
  929. return -EFAULT;
  930. if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
  931. return status;
  932. break;
  933. case SIOCGCMPIDS: /* get PIDs */
  934. if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
  935. return status;
  936. if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
  937. return -EFAULT;
  938. break;
  939. case SIOCSCMPIDS: /* set PIDs */
  940. if (!capable(CAP_NET_ADMIN))
  941. return -EPERM;
  942. if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
  943. return -EFAULT;
  944. if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
  945. return status;
  946. /* set session_id, frame_id and pkt_type too */
  947. lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
  948. lp->rx_session_id[1] = 0x48;
  949. lp->rx_session_id[2] = 0x44;
  950. lp->rx_session_id[3] = 0x42;
  951. lp->rx_frame_id[0] = 0;
  952. lp->rx_frame_id[1] = 0;
  953. lp->rx_frame_id[2] = 0;
  954. lp->rx_frame_id[3] = 0;
  955. break;
  956. default:
  957. status = -EINVAL;
  958. break;
  959. }
  960. return status;
  961. }
  962. /* transmit function: do nothing since SB1000 can't send anything out */
  963. static int
  964. sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  965. {
  966. printk(KERN_WARNING "%s: trying to transmit!!!n", dev->name);
  967. /* sb1000 can't xmit datagrams */
  968. dev_kfree_skb(skb);
  969. return 0;
  970. }
  971. /* SB1000 interrupt handler. */
  972. static void sb1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  973. {
  974. char *name;
  975. unsigned char st;
  976. int ioaddr[2];
  977. struct net_device *dev = (struct net_device *) dev_id;
  978. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  979. const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
  980. const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
  981. const int MaxRxErrorCount = 6;
  982. if (dev == NULL) {
  983. printk(KERN_ERR "sb1000_interrupt(): irq %d for unknown device.n",
  984. irq);
  985. return;
  986. }
  987. ioaddr[0] = dev->base_addr;
  988. /* rmem_end holds the second I/O address - fv */
  989. ioaddr[1] = dev->rmem_end;
  990. name = dev->name;
  991. /* is it a good interrupt? */
  992. st = inb(ioaddr[1] + 6);
  993. if (!(st & 0x08 && st & 0x20)) {
  994. return;
  995. }
  996. if (sb1000_debug > 3)
  997. printk(KERN_DEBUG "%s: entering interruptn", dev->name);
  998. st = inb(ioaddr[0] + 7);
  999. if (sb1000_rx(dev))
  1000. lp->rx_error_count++;
  1001. #ifdef SB1000_DELAY
  1002. udelay(SB1000_DELAY);
  1003. #endif /* SB1000_DELAY */
  1004. sb1000_issue_read_command(ioaddr, name);
  1005. if (st & 0x01) {
  1006. sb1000_error_dpc(dev);
  1007. sb1000_issue_read_command(ioaddr, name);
  1008. }
  1009. if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
  1010. sb1000_wait_for_ready_clear(ioaddr, name);
  1011. sb1000_send_command(ioaddr, name, Command0);
  1012. sb1000_wait_for_ready(ioaddr, name);
  1013. sb1000_issue_read_command(ioaddr, name);
  1014. }
  1015. if (lp->rx_error_count >= MaxRxErrorCount) {
  1016. sb1000_wait_for_ready_clear(ioaddr, name);
  1017. sb1000_send_command(ioaddr, name, Command1);
  1018. sb1000_wait_for_ready(ioaddr, name);
  1019. sb1000_issue_read_command(ioaddr, name);
  1020. lp->rx_error_count = 0;
  1021. }
  1022. return;
  1023. }
  1024. static struct net_device_stats *sb1000_stats(struct net_device *dev)
  1025. {
  1026. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  1027. return &lp->stats;
  1028. }
  1029. static int sb1000_close(struct net_device *dev)
  1030. {
  1031. int i;
  1032. int ioaddr[2];
  1033. struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
  1034. if (sb1000_debug > 2)
  1035. printk(KERN_DEBUG "%s: Shutting down sb1000.n", dev->name);
  1036. netif_stop_queue(dev);
  1037. ioaddr[0] = dev->base_addr;
  1038. /* rmem_end holds the second I/O address - fv */
  1039. ioaddr[1] = dev->rmem_end;
  1040. free_irq(dev->irq, dev);
  1041. /* If we don't do this, we can't re-insmod it later. */
  1042. release_region(ioaddr[1], SB1000_IO_EXTENT);
  1043. release_region(ioaddr[0], SB1000_IO_EXTENT);
  1044. /* free rx_skb's if needed */
  1045. for (i=0; i<4; i++) {
  1046. if (lp->rx_skb[i]) {
  1047. dev_kfree_skb(lp->rx_skb[i]);
  1048. }
  1049. }
  1050. return 0;
  1051. }
  1052. #ifdef MODULE
  1053. MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
  1054. MODULE_DESCRIPTION("General Instruments SB1000 driver");
  1055. MODULE_LICENSE("GPL");
  1056. MODULE_PARM(io, "1-2i");
  1057. MODULE_PARM(irq, "i");
  1058. MODULE_PARM_DESC(io, "SB1000 I/O base addresses");
  1059. MODULE_PARM_DESC(irq, "SB1000 IRQ number");
  1060. static struct net_device dev_sb1000;
  1061. static int io[2];
  1062. static int irq;
  1063. int
  1064. init_module(void)
  1065. {
  1066. int i;
  1067. for (i = 0; i < 100; i++) {
  1068. sprintf(dev_sb1000.name, "cm%d", i);
  1069. if (dev_get(dev_sb1000.name) == 0) break;
  1070. }
  1071. if (i == 100) {
  1072. printk(KERN_ERR "sb1000: can't register any device cm<n>n");
  1073. return -ENFILE;
  1074. }
  1075. dev_sb1000.init = sb1000_probe;
  1076. dev_sb1000.base_addr = io[0];
  1077. /* rmem_end holds the second I/O address - fv */
  1078. dev_sb1000.rmem_end = io[1];
  1079. dev_sb1000.irq = irq;
  1080. if (register_netdev(&dev_sb1000) != 0) {
  1081. printk(KERN_ERR "sb1000: failed to register device (io: %03x,%03x   "
  1082. "irq: %d)n", io[0], io[1], irq);
  1083. return -EIO;
  1084. }
  1085. return 0;
  1086. }
  1087. void cleanup_module(void)
  1088. {
  1089. unregister_netdev(&dev_sb1000);
  1090. release_region(dev_sb1000.base_addr, 16);
  1091. release_region(dev_sb1000.rmem_end, 16);
  1092. kfree(dev_sb1000.priv);
  1093. dev_sb1000.priv = NULL;
  1094. }
  1095. #endif /* MODULE */
  1096. /*
  1097.  * Local variables:
  1098.  *  compile-command: "gcc -D__KERNEL__ -DMODULE -Wall -Wstrict-prototypes -O -m486 -c sb1000.c"
  1099.  *  version-control: t
  1100.  *  tab-width: 4
  1101.  *  c-basic-offset: 4
  1102.  * End:
  1103.  */