Rayleigh_Doppler_multiPath.m
上传用户:qin0369
上传日期:2013-03-07
资源大小:9k
文件大小:8k
- function y = Rayleigh_Doppler_multiPath(fc,v,startT,endT,deltaT,fchip,delayTime,averagePower)
- %He jian, 2005.3
- %产生multipath Rayleigh分布(Doppler Shift),基于Clarke模型
- %return 复变量
- %fc=2000;%载频(MHz)
- %v=50;%绝对时速(km/h)
- % startT,endT(s):分别表示信道仿真的开始时间、终止时间,通常startT=0,endT=1s,
- % deltaT(ms):时间间隔,通常deltaT=1ms
- %fchip=1.28;%chip速率(Mchip/s)
- %delayTime=[0,781,1563,2344];%ns(10^-9s)
- %averagePower=[0,-3,-6,-9];%dB
- %method_flag = 3; %1,按ns delay,运算量大(目前不考虑该方法!)
- %2,按chip delay,运算量较大,在path delay不是chip时间整数倍时有误差
- %3,直接在抽样上delay,运算量小
- if(fchip~=0)
- method_flag = 2;
- else
- method_flag = 3;
- end
- if (method_flag==1)
- method_flag_str = '第1种方法,按ns delay';
- elseif (method_flag==2)
- method_flag_str = '第2种方法,按chip delay';
- elseif (method_flag==3)
- method_flag_str = '第3种方法,在抽样上delay';
- else
- end
- %tic;%Start timer of the simulation
- averagePower=10.^(averagePower/10);
- averagePower=averagePower/sum(averagePower);%将信道做归一化!
- %get number of all paths
- Np=length(delayTime);%delayTime与averagePower维数必须一致
- if (method_flag==1)%对Np条径进行delay,1st method:按ns delay,运算量大
- elseif (method_flag==2)%对Np条径进行delay,2nd method:按chip delay,运算量小,在path delay不是chip时间整数倍时有误差
- Tchip=1/(fchip*10^6);%一个chip占用时间(s)
- %将延时折算成延chip!!
- delayChip=round(delayTime*10^-9/Tchip)
- %get Np rayleigh path,deltaT按一个chip周期
- deltaT=Tchip*1000;%ms
- r0 = zeros(Np,length([startT:deltaT/1000:endT]));
- for n=1:1:Np
- ['==========',method_flag_str,'==========',num2str(Np),'径--- 第',num2str(n),'径==========']
-
- %tic;
- tempr = sqrt(averagePower(n))*Rayleigh_Doppler_singlePath(fc,v,startT,endT,deltaT);
- %tempr = Rayleigh_Doppler_singlePath(fc,v,startT,endT,deltaT);
-
- %delay chip...
- r0(n,:) = [zeros(delayChip(n),1);tempr(1:length(tempr)-delayChip(n))]';
- %r0(n,:)=abs(r0(n,:)).^2 * averagePower(n);%Np条径
- clear tempr;
-
- %disp(['one rayleigh channel time: ' num2str(toc) '秒']);
- end
- rm = sum(r0)';
- clear r0;
- elseif (method_flag==3)
- %此时,delayTime以最晚一个径为基准,条件参数中是以第一个径为准的!
- for n=1:1:Np
- delayTime(n) = delayTime(Np) - delayTime(n);
- end
-
- for n=1:1:Np
- lenT(n) = length([startT+delayTime(n)*10^-9:deltaT/1000:endT]);
- end
- r0 = zeros(Np,min(lenT));
- for n=1:1:Np
- ['==========',method_flag_str,'==========',num2str(Np),'径--- 第',num2str(n),'径==========']
-
- %tic;
- tempr = sqrt(averagePower(n))*Rayleigh_Doppler_singlePath(fc,v,startT+delayTime(n)*10^-9,endT,deltaT);
- %tempr = Rayleigh_Doppler_singlePath(fc,v,startT+delayTime(n)*10^-9,endT,deltaT);
-
- r0(n,:) = tempr([1:min(lenT)])';
- %r0(n,:)=abs(r0(n,:)).^2 * averagePower(n);%Np条径
- clear tempr;
-
- %disp(['one rayleigh channel time: ' num2str(toc) '秒']);
- end
- rm = sum(r0)';
- clear r0;
-
- startT = startT+max(delayTime)*10^-9;
- ['起始时间 为 startT,',num2str(startT),' s!']
- else
- end
- plot_flag = 0; %1:需要plot,0:not plot
- if plot_flag==1
- fs = 1000/deltaT; %fs = fchip*10^6;
- c=3*10^8;%光速(m/s)
- fmax = (fc*10^6)*(v*10^3/3600)/c; % Max Doppler Shift (Hz)
-
- f_lim_range = [-fmax*2,fmax*2];
- %功率谱估计
- Nfft = 2^4;
- while(Nfft)
- if (Nfft < length(rm))
- Nfft = 2*Nfft;
- else
- break;
- end
- end
- Nfft = Nfft/2;%让数据长度为2的幂,又不超出采样长度
- r2 = rm(1:Nfft);
-
- Power_dB = 20*log10(abs(r2));% to dB!
-
- figure;
- subplot(2,2,1);
- plot([startT*1000:deltaT:startT*1000+deltaT*(Nfft-1)],Power_dB);grid;axis tight;title([num2str(fc), 'MHz,',num2str(v), 'km/h,Max Doppler=',num2str(fmax,'%.2f'),'Hz,',num2str(Np),'条径']);xlabel('ms');ylabel('dB值');
- %plot([startT*1000:deltaT:endT*1000],Power_dB);grid;axis tight;title([num2str(fc), 'MHz,',num2str(v), 'km/h,Max Doppler=',num2str(fmax,'%.2f'),'Hz,',num2str(Np),'条径']);xlabel('ms');ylabel('dB值');
- legend(['E(r^2)=',num2str(10*log10(sum(abs(r2).^2)/length(r2)),'%.2f'),' dB']);
- clear Power_dB;
-
- subplot(2,2,2);
- clear psd_matlab;clear f_matlab;
- [psd_matlab,f_matlab] = pwelch(r2,[],[],'twosided',Nfft,fs);%pwelch(x,window,noverlap,nfft,fs)
- psd_matlab = fftshift(psd_matlab);
- len = length(f_matlab);
- plot([-flipud(f_matlab(2:len/2+1));f_matlab(1:len/2)],10*log10(psd_matlab));
- %doppler shift
- hold on;
- sigma_u4 = sqrt(1/2);fm4 = [-fmax*0.999:fmax/100:fmax*0.999];fc4 = 0;
- Sf4 = 1.5*sigma_u4/(pi*fmax).*1./(sqrt(1-((fm4-fc4)./fmax).^2));
- plot(fm4,10*log10(Sf4),'-.r',min(fm4).*ones(1,2),[min(10*log10(psd_matlab)),max(10*log10(Sf4))],'-.r',max(fm4).*ones(1,2),[min(10*log10(psd_matlab)),max(10*log10(Sf4))],'-.r','LineWidth',1.5);
- legend('仿真值','单径理论值');
- xlim(f_lim_range);grid;
- title('pwelch(),Welch Method');xlabel('Hz');ylabel('dB/Hz');
- subplot(2,2,3);
- clear psd_matlab;clear f_matlab;
- [psd_matlab,f_matlab] = pmtm(r2,4,'twosided',Nfft,fs);
- psd_matlab = fftshift(psd_matlab);
- len = length(f_matlab);
- plot([-flipud(f_matlab(2:len/2+1));f_matlab(1:len/2)],10*log10(psd_matlab));
- %doppler shift
- hold on;
- plot(fm4,10*log10(Sf4),'-.r',min(fm4).*ones(1,2),[min(10*log10(psd_matlab)),max(10*log10(Sf4))],'-.r',max(fm4).*ones(1,2),[min(10*log10(psd_matlab)),max(10*log10(Sf4))],'-.r','LineWidth',1.5);
- legend('仿真值','单径理论值');
- xlim(f_lim_range);grid;
- title('pmtm(),Multitaper method(MTM)');xlabel('Hz');ylabel('dB/Hz');
-
- subplot(2,2,4);
- clear psd_matlab;clear f_matlab;
- [psd_matlab,f_matlab] = pyulear(r2,round(Nfft/20),'twosided',Nfft,fs);
- psd_matlab = fftshift(psd_matlab);
- len = length(f_matlab);
- plot([-flipud(f_matlab(2:len/2+1));f_matlab(1:len/2)],10*log10(psd_matlab));
- %doppler shift
- hold on;
- plot(fm4,10*log10(Sf4),'-.r',min(fm4).*ones(1,2),[min(10*log10(psd_matlab)),max(10*log10(Sf4))],'-.r',max(fm4).*ones(1,2),[min(10*log10(psd_matlab)),max(10*log10(Sf4))],'-.r','LineWidth',1.5);
- legend('仿真值','单径理论值');
- xlim(f_lim_range);grid;
- title('pyulear(),Yule-Walker AR Method');xlabel('Hz');ylabel('dB/Hz');
- clear r2;
- % yw = abs(fftshift(fft(r2))).^2/length(r2);
- % clear r2;
- %
- % len = length(yw);
- % f_range = (-len/2:len/2-1)/len*fs; %[-fs/2:1/(endT-startT):fs/2];%(0:len-1)/len*fs;
- % subplot(2,2,2);plot(f_range,10*log10(yw));grid;xlim([-fmax*1.2,fmax*1.2]);title('周期图法 功率谱');xlabel('频率(Hz)');ylabel('功率谱(dB)');
- % yw2=yw;f_less=find(f_range<0);f_more=find(f_range>fmax);yw2([f_less,f_more])=[];
- % %legend(['(0,fmax)积分功率=',num2str(10*log10(sum(yw2)*fs/len/fmax),'%.2f'),' dB/Hz']);
- % legend(['(0,fmax)积分功率=',num2str(10*log10(mean(yw2)),'%.2f'),' dB/Hz']);
- % clear yw2;
- %
- % subplot(2,2,3);plot(f_range,10*log10(yw));xlim([-fmax*4,fmax*4]);grid;title(['周期图法 功率谱']);
- % xlabel('频率(Hz)');ylabel('功率谱(dB)');
- % clear yw;
- %
- % %======= Welch K from 2 to 5 使频域不至于展开过宽,而分辨不清!=======
- % Kmax = 3; K=Kmax+1;
- %
- % L = 2^4; %每段数据长度,2的幂
- % if (1.5*L>=length(rm))
- % 'Welch: 数据总长度应> 1.5*L!'
- % return;
- % end
- %
- % while (K>Kmax)
- % Lmax = floor(length(rm)*2/L)/2*L; %需要从rm中提取的数据总长度
- % K = Lmax*2/L-1; %数据分段数
- % if (K <= Kmax)
- % break;
- % else
- % L = 2*L;
- % end
- % end
- %
- % w_hn = hanning(L);
- % Pw = [];
- % for k=1:1:K
- % Pw(k,:) = (abs(fftshift(fft(w_hn.*rm(1+(k-1)*L/2:L+(k-1)*L/2)))).^2)';
- % end
- % Pw = sum(Pw)/(norm(w_hn)^2*K);
- % f_range = (-L/2:L/2-1)/L*fs;
- %
- % subplot(2,2,4);plot(f_range,10*log10(Pw));grid;title(['Welch法 功率谱,K=',num2str(K),',L=2^',num2str(log2(L))]);xlim([-fmax*1.2,fmax*1.2]);xlabel('频率(Hz)');ylabel('功率谱(dB)');
- % f_less=find(f_range<0);f_more=find(f_range>fmax);Pw([f_less,f_more])=[];
- % %legend(['(0,fmax)积分功率=',num2str(10*log10(sum(Pw)*fs/L/fmax),'%.2f'),' dB/Hz']);
- % legend(['(0,fmax)积分功率=',num2str(10*log10(mean(Pw)),'%.2f'),' dB/Hz']);
- % clear Pw;
- end
- y=rm(:);