dt_BivaShrink123.m
资源名称:小波去噪.rar [点击查看]
上传用户:sla11nk8
上传日期:2013-03-09
资源大小:21k
文件大小:3k
源码类别:
其他
开发平台:
Matlab
- function y = dt_BivaShrink123(x)
- % Local Adaptive Image Denoising Algorithm
- % Usage :% y = denoising_dtdwt(x)
- % INPUT :% x - a noisy image
- % OUTPUT :% y - the corresponding denoised image
- % Set the windowsize and the corresponding filter
- windowsize = 7;
- windowfilt = ones(1,windowsize)/windowsize;
- windowfilt2=[1 1 1;1 0 1;1 1 1]/8;
- % Number of Stages
- J = 6;
- I=sqrt(-1);
- % symmetric extension
- L = length(x); % length of the original image.
- N = L+2^J; % length after extension.
- x = symextend(x,2^(J-1));
- % Forward dual-tree DWT
- % Either FSfarras or AntonB function can be used to compute the stage 1 filters
- [Faf, Fsf] = FSfarras;
- %[Faf, Fsf] = AntonB;
- [af, sf] = dualfilt1;
- W = cplxdual2D(x, J, Faf, af);
- %W = normcoef(W,J,nor);%-------------------------
- % Noise variance estimation using robust median estimator..
- tmp = W{1}{1}{1}{1};
- Nsig = median(abs(tmp(:)))/0.6745;
- for scale = 1:J-1
- for dir = 1:2
- for dir1 = 1:3
- % Noisy complex coefficients
- %Real part
- Y_coef_real = W{scale}{1}{dir}{dir1};
- % imaginary part
- Y_coef_imag = W{scale}{2}{dir}{dir1};
- % The corresponding noisy parent coefficients
- %Real part
- Y_parent_real = W{scale+1}{1}{dir}{dir1};
- % imaginary part
- Y_parent_imag = W{scale+1}{2}{dir}{dir1};
- % Extend noisy parent matrix to make the matrix size the same as the coefficient matrix.
- Y_parent_real = expand(Y_parent_real);
- Y_parent_imag = expand(Y_parent_imag);
- %----计算邻域系数值----
- Y_adjacent_real=sqrt(conv2((Y_coef_real).^2,windowfilt2,'same'));
- Y_adjacent_imag=sqrt(conv2((Y_coef_imag).^2,windowfilt2,'same'));
- % Signal variance estimation
- Wsig = conv2(windowfilt,windowfilt,(Y_coef_real).^2,'same');%---用Gauss分布的ML估计系数方差----
- Ssig = sqrt(max(Wsig-Nsig.^2,eps));
- % Threshold value estimation
- T = sqrt(3)*Nsig^2./Ssig;
- %
- Y_coef = Y_coef_real+I*Y_coef_imag;
- Y_parent = Y_parent_real + I*Y_parent_imag;
- Y_adjacent = Y_adjacent_real + I*Y_adjacent_imag;
- % trivariate Shrinkage
- Y_coef = trishrink1(Y_coef,Y_adjacent,Y_parent,T);
- W{scale}{1}{dir}{dir1} = real(Y_coef);
- W{scale}{2}{dir}{dir1} = imag(Y_coef);
- end
- end
- end
- % Inverse Transform
- %W = unnormcoef(W,J,nor);------------------
- y = icplxdual2D(W, J, Fsf, sf);
- % Extract the image
- ind = 2^(J-1)+1:2^(J-1)+L;
- y = y(ind,ind);