mm.h
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:25k
- #ifndef _LINUX_MM_H
- #define _LINUX_MM_H
- #include <linux/sched.h>
- #include <linux/errno.h>
- #ifdef __KERNEL__
- #include <linux/config.h>
- #include <linux/string.h>
- #include <linux/list.h>
- #include <linux/mmzone.h>
- #include <linux/swap.h>
- #include <linux/rbtree.h>
- extern unsigned long max_mapnr;
- extern unsigned long num_physpages;
- extern unsigned long num_mappedpages;
- extern void * high_memory;
- extern int page_cluster;
- /* The inactive_clean lists are per zone. */
- extern struct list_head active_list;
- extern struct list_head inactive_list;
- #include <asm/page.h>
- #include <asm/pgtable.h>
- #include <asm/atomic.h>
- /*
- * Linux kernel virtual memory manager primitives.
- * The idea being to have a "virtual" mm in the same way
- * we have a virtual fs - giving a cleaner interface to the
- * mm details, and allowing different kinds of memory mappings
- * (from shared memory to executable loading to arbitrary
- * mmap() functions).
- */
- /*
- * This struct defines a memory VMM memory area. There is one of these
- * per VM-area/task. A VM area is any part of the process virtual memory
- * space that has a special rule for the page-fault handlers (ie a shared
- * library, the executable area etc).
- */
- struct vm_area_struct {
- struct mm_struct * vm_mm; /* The address space we belong to. */
- unsigned long vm_start; /* Our start address within vm_mm. */
- unsigned long vm_end; /* The first byte after our end address
- within vm_mm. */
- /* linked list of VM areas per task, sorted by address */
- struct vm_area_struct *vm_next;
- pgprot_t vm_page_prot; /* Access permissions of this VMA. */
- unsigned long vm_flags; /* Flags, listed below. */
- rb_node_t vm_rb;
- /*
- * For areas with an address space and backing store,
- * one of the address_space->i_mmap{,shared} lists,
- * for shm areas, the list of attaches, otherwise unused.
- */
- struct vm_area_struct *vm_next_share;
- struct vm_area_struct **vm_pprev_share;
- /* Function pointers to deal with this struct. */
- struct vm_operations_struct * vm_ops;
- /* Information about our backing store: */
- unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
- units, *not* PAGE_CACHE_SIZE */
- struct file * vm_file; /* File we map to (can be NULL). */
- unsigned long vm_raend; /* XXX: put full readahead info here. */
- void * vm_private_data; /* was vm_pte (shared mem) */
- };
- /*
- * vm_flags..
- */
- #define VM_READ 0x00000001 /* currently active flags */
- #define VM_WRITE 0x00000002
- #define VM_EXEC 0x00000004
- #define VM_SHARED 0x00000008
- #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
- #define VM_MAYWRITE 0x00000020
- #define VM_MAYEXEC 0x00000040
- #define VM_MAYSHARE 0x00000080
- #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
- #define VM_GROWSUP 0x00000200
- #define VM_SHM 0x00000400 /* shared memory area, don't swap out */
- #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
- #define VM_EXECUTABLE 0x00001000
- #define VM_LOCKED 0x00002000
- #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
- /* Used by sys_madvise() */
- #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
- #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
- #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
- #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
- #define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */
- #define VM_STACK_FLAGS 0x00000177
- #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
- #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
- #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
- #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
- #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
- /* read ahead limits */
- extern int vm_min_readahead;
- extern int vm_max_readahead;
- /*
- * mapping from the currently active vm_flags protection bits (the
- * low four bits) to a page protection mask..
- */
- extern pgprot_t protection_map[16];
- /*
- * These are the virtual MM functions - opening of an area, closing and
- * unmapping it (needed to keep files on disk up-to-date etc), pointer
- * to the functions called when a no-page or a wp-page exception occurs.
- */
- struct vm_operations_struct {
- void (*open)(struct vm_area_struct * area);
- void (*close)(struct vm_area_struct * area);
- struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused);
- };
- /*
- * Each physical page in the system has a struct page associated with
- * it to keep track of whatever it is we are using the page for at the
- * moment. Note that we have no way to track which tasks are using
- * a page.
- *
- * Try to keep the most commonly accessed fields in single cache lines
- * here (16 bytes or greater). This ordering should be particularly
- * beneficial on 32-bit processors.
- *
- * The first line is data used in page cache lookup, the second line
- * is used for linear searches (eg. clock algorithm scans).
- *
- * TODO: make this structure smaller, it could be as small as 32 bytes.
- */
- typedef struct page {
- struct list_head list; /* ->mapping has some page lists. */
- struct address_space *mapping; /* The inode (or ...) we belong to. */
- unsigned long index; /* Our offset within mapping. */
- struct page *next_hash; /* Next page sharing our hash bucket in
- the pagecache hash table. */
- atomic_t count; /* Usage count, see below. */
- unsigned long flags; /* atomic flags, some possibly
- updated asynchronously */
- struct list_head lru; /* Pageout list, eg. active_list;
- protected by pagemap_lru_lock !! */
- struct page **pprev_hash; /* Complement to *next_hash. */
- struct buffer_head * buffers; /* Buffer maps us to a disk block. */
- /*
- * On machines where all RAM is mapped into kernel address space,
- * we can simply calculate the virtual address. On machines with
- * highmem some memory is mapped into kernel virtual memory
- * dynamically, so we need a place to store that address.
- * Note that this field could be 16 bits on x86 ... ;)
- *
- * Architectures with slow multiplication can define
- * WANT_PAGE_VIRTUAL in asm/page.h
- */
- #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
- void *virtual; /* Kernel virtual address (NULL if
- not kmapped, ie. highmem) */
- #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
- } mem_map_t;
- /*
- * Methods to modify the page usage count.
- *
- * What counts for a page usage:
- * - cache mapping (page->mapping)
- * - disk mapping (page->buffers)
- * - page mapped in a task's page tables, each mapping
- * is counted separately
- *
- * Also, many kernel routines increase the page count before a critical
- * routine so they can be sure the page doesn't go away from under them.
- */
- #define get_page(p) atomic_inc(&(p)->count)
- #define put_page(p) __free_page(p)
- #define put_page_testzero(p) atomic_dec_and_test(&(p)->count)
- #define page_count(p) atomic_read(&(p)->count)
- #define set_page_count(p,v) atomic_set(&(p)->count, v)
- /*
- * Various page->flags bits:
- *
- * PG_reserved is set for special pages, which can never be swapped
- * out. Some of them might not even exist (eg empty_bad_page)...
- *
- * Multiple processes may "see" the same page. E.g. for untouched
- * mappings of /dev/null, all processes see the same page full of
- * zeroes, and text pages of executables and shared libraries have
- * only one copy in memory, at most, normally.
- *
- * For the non-reserved pages, page->count denotes a reference count.
- * page->count == 0 means the page is free.
- * page->count == 1 means the page is used for exactly one purpose
- * (e.g. a private data page of one process).
- *
- * A page may be used for kmalloc() or anyone else who does a
- * __get_free_page(). In this case the page->count is at least 1, and
- * all other fields are unused but should be 0 or NULL. The
- * management of this page is the responsibility of the one who uses
- * it.
- *
- * The other pages (we may call them "process pages") are completely
- * managed by the Linux memory manager: I/O, buffers, swapping etc.
- * The following discussion applies only to them.
- *
- * A page may belong to an inode's memory mapping. In this case,
- * page->mapping is the pointer to the inode, and page->index is the
- * file offset of the page, in units of PAGE_CACHE_SIZE.
- *
- * A page may have buffers allocated to it. In this case,
- * page->buffers is a circular list of these buffer heads. Else,
- * page->buffers == NULL.
- *
- * For pages belonging to inodes, the page->count is the number of
- * attaches, plus 1 if buffers are allocated to the page, plus one
- * for the page cache itself.
- *
- * All pages belonging to an inode are in these doubly linked lists:
- * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
- * using the page->list list_head. These fields are also used for
- * freelist managemet (when page->count==0).
- *
- * There is also a hash table mapping (mapping,index) to the page
- * in memory if present. The lists for this hash table use the fields
- * page->next_hash and page->pprev_hash.
- *
- * All process pages can do I/O:
- * - inode pages may need to be read from disk,
- * - inode pages which have been modified and are MAP_SHARED may need
- * to be written to disk,
- * - private pages which have been modified may need to be swapped out
- * to swap space and (later) to be read back into memory.
- * During disk I/O, PG_locked is used. This bit is set before I/O
- * and reset when I/O completes. page_waitqueue(page) is a wait queue of all
- * tasks waiting for the I/O on this page to complete.
- * PG_uptodate tells whether the page's contents is valid.
- * When a read completes, the page becomes uptodate, unless a disk I/O
- * error happened.
- *
- * For choosing which pages to swap out, inode pages carry a
- * PG_referenced bit, which is set any time the system accesses
- * that page through the (mapping,index) hash table. This referenced
- * bit, together with the referenced bit in the page tables, is used
- * to manipulate page->age and move the page across the active,
- * inactive_dirty and inactive_clean lists.
- *
- * Note that the referenced bit, the page->lru list_head and the
- * active, inactive_dirty and inactive_clean lists are protected by
- * the pagemap_lru_lock, and *NOT* by the usual PG_locked bit!
- *
- * PG_skip is used on sparc/sparc64 architectures to "skip" certain
- * parts of the address space.
- *
- * PG_error is set to indicate that an I/O error occurred on this page.
- *
- * PG_arch_1 is an architecture specific page state bit. The generic
- * code guarantees that this bit is cleared for a page when it first
- * is entered into the page cache.
- *
- * PG_highmem pages are not permanently mapped into the kernel virtual
- * address space, they need to be kmapped separately for doing IO on
- * the pages. The struct page (these bits with information) are always
- * mapped into kernel address space...
- */
- #define PG_locked 0 /* Page is locked. Don't touch. */
- #define PG_error 1
- #define PG_referenced 2
- #define PG_uptodate 3
- #define PG_dirty 4
- #define PG_unused 5
- #define PG_lru 6
- #define PG_active 7
- #define PG_slab 8
- #define PG_skip 10
- #define PG_highmem 11
- #define PG_checked 12 /* kill me in 2.5.<early>. */
- #define PG_arch_1 13
- #define PG_reserved 14
- #define PG_launder 15 /* written out by VM pressure.. */
- /* Make it prettier to test the above... */
- #define UnlockPage(page) unlock_page(page)
- #define Page_Uptodate(page) test_bit(PG_uptodate, &(page)->flags)
- #define SetPageUptodate(page) set_bit(PG_uptodate, &(page)->flags)
- #define ClearPageUptodate(page) clear_bit(PG_uptodate, &(page)->flags)
- #define PageDirty(page) test_bit(PG_dirty, &(page)->flags)
- #define SetPageDirty(page) set_bit(PG_dirty, &(page)->flags)
- #define ClearPageDirty(page) clear_bit(PG_dirty, &(page)->flags)
- #define PageLocked(page) test_bit(PG_locked, &(page)->flags)
- #define LockPage(page) set_bit(PG_locked, &(page)->flags)
- #define TryLockPage(page) test_and_set_bit(PG_locked, &(page)->flags)
- #define PageChecked(page) test_bit(PG_checked, &(page)->flags)
- #define SetPageChecked(page) set_bit(PG_checked, &(page)->flags)
- #define PageLaunder(page) test_bit(PG_launder, &(page)->flags)
- #define SetPageLaunder(page) set_bit(PG_launder, &(page)->flags)
- #define ClearPageLaunder(page) clear_bit(PG_launder, &(page)->flags)
- /*
- * The zone field is never updated after free_area_init_core()
- * sets it, so none of the operations on it need to be atomic.
- */
- #define NODE_SHIFT 4
- #define ZONE_SHIFT (BITS_PER_LONG - 8)
- struct zone_struct;
- extern struct zone_struct *zone_table[];
- static inline zone_t *page_zone(struct page *page)
- {
- return zone_table[page->flags >> ZONE_SHIFT];
- }
- static inline void set_page_zone(struct page *page, unsigned long zone_num)
- {
- page->flags &= ~(~0UL << ZONE_SHIFT);
- page->flags |= zone_num << ZONE_SHIFT;
- }
- /*
- * In order to avoid #ifdefs within C code itself, we define
- * set_page_address to a noop for non-highmem machines, where
- * the field isn't useful.
- * The same is true for page_address() in arch-dependent code.
- */
- #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
- #define set_page_address(page, address)
- do {
- (page)->virtual = (address);
- } while(0)
- #else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
- #define set_page_address(page, address) do { } while(0)
- #endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
- /*
- * Permanent address of a page. Obviously must never be
- * called on a highmem page.
- */
- #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
- #define page_address(page) ((page)->virtual)
- #else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
- #define page_address(page)
- __va( (((page) - page_zone(page)->zone_mem_map) << PAGE_SHIFT)
- + page_zone(page)->zone_start_paddr)
- #endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
- extern void FASTCALL(set_page_dirty(struct page *));
- /*
- * The first mb is necessary to safely close the critical section opened by the
- * TryLockPage(), the second mb is necessary to enforce ordering between
- * the clear_bit and the read of the waitqueue (to avoid SMP races with a
- * parallel wait_on_page).
- */
- #define PageError(page) test_bit(PG_error, &(page)->flags)
- #define SetPageError(page) set_bit(PG_error, &(page)->flags)
- #define ClearPageError(page) clear_bit(PG_error, &(page)->flags)
- #define PageReferenced(page) test_bit(PG_referenced, &(page)->flags)
- #define SetPageReferenced(page) set_bit(PG_referenced, &(page)->flags)
- #define ClearPageReferenced(page) clear_bit(PG_referenced, &(page)->flags)
- #define PageTestandClearReferenced(page) test_and_clear_bit(PG_referenced, &(page)->flags)
- #define PageSlab(page) test_bit(PG_slab, &(page)->flags)
- #define PageSetSlab(page) set_bit(PG_slab, &(page)->flags)
- #define PageClearSlab(page) clear_bit(PG_slab, &(page)->flags)
- #define PageReserved(page) test_bit(PG_reserved, &(page)->flags)
- #define PageActive(page) test_bit(PG_active, &(page)->flags)
- #define SetPageActive(page) set_bit(PG_active, &(page)->flags)
- #define ClearPageActive(page) clear_bit(PG_active, &(page)->flags)
- #define PageLRU(page) test_bit(PG_lru, &(page)->flags)
- #define TestSetPageLRU(page) test_and_set_bit(PG_lru, &(page)->flags)
- #define TestClearPageLRU(page) test_and_clear_bit(PG_lru, &(page)->flags)
- #ifdef CONFIG_HIGHMEM
- #define PageHighMem(page) test_bit(PG_highmem, &(page)->flags)
- #else
- #define PageHighMem(page) 0 /* needed to optimize away at compile time */
- #endif
- #define SetPageReserved(page) set_bit(PG_reserved, &(page)->flags)
- #define ClearPageReserved(page) clear_bit(PG_reserved, &(page)->flags)
- /*
- * Error return values for the *_nopage functions
- */
- #define NOPAGE_SIGBUS (NULL)
- #define NOPAGE_OOM ((struct page *) (-1))
- /* The array of struct pages */
- extern mem_map_t * mem_map;
- /*
- * There is only one page-allocator function, and two main namespaces to
- * it. The alloc_page*() variants return 'struct page *' and as such
- * can allocate highmem pages, the *get*page*() variants return
- * virtual kernel addresses to the allocated page(s).
- */
- extern struct page * FASTCALL(_alloc_pages(unsigned int gfp_mask, unsigned int order));
- extern struct page * FASTCALL(__alloc_pages(unsigned int gfp_mask, unsigned int order, zonelist_t *zonelist));
- extern struct page * alloc_pages_node(int nid, unsigned int gfp_mask, unsigned int order);
- static inline struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)
- {
- /*
- * Gets optimized away by the compiler.
- */
- if (order >= MAX_ORDER)
- return NULL;
- return _alloc_pages(gfp_mask, order);
- }
- #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
- extern unsigned long FASTCALL(__get_free_pages(unsigned int gfp_mask, unsigned int order));
- extern unsigned long FASTCALL(get_zeroed_page(unsigned int gfp_mask));
- #define __get_free_page(gfp_mask)
- __get_free_pages((gfp_mask),0)
- #define __get_dma_pages(gfp_mask, order)
- __get_free_pages((gfp_mask) | GFP_DMA,(order))
- /*
- * The old interface name will be removed in 2.5:
- */
- #define get_free_page get_zeroed_page
- /*
- * There is only one 'core' page-freeing function.
- */
- extern void FASTCALL(__free_pages(struct page *page, unsigned int order));
- extern void FASTCALL(free_pages(unsigned long addr, unsigned int order));
- #define __free_page(page) __free_pages((page), 0)
- #define free_page(addr) free_pages((addr),0)
- extern void show_free_areas(void);
- extern void show_free_areas_node(pg_data_t *pgdat);
- extern void clear_page_tables(struct mm_struct *, unsigned long, int);
- extern int fail_writepage(struct page *);
- struct page * shmem_nopage(struct vm_area_struct * vma, unsigned long address, int unused);
- struct file *shmem_file_setup(char * name, loff_t size);
- extern void shmem_lock(struct file * file, int lock);
- extern int shmem_zero_setup(struct vm_area_struct *);
- extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
- extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
- extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
- extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
- extern int vmtruncate(struct inode * inode, loff_t offset);
- extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
- extern pte_t *FASTCALL(pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
- extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
- extern int make_pages_present(unsigned long addr, unsigned long end);
- extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
- extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char *dst, int len);
- extern int ptrace_writedata(struct task_struct *tsk, char * src, unsigned long dst, int len);
- extern int ptrace_attach(struct task_struct *tsk);
- extern int ptrace_detach(struct task_struct *, unsigned int);
- extern void ptrace_disable(struct task_struct *);
- extern int ptrace_check_attach(struct task_struct *task, int kill);
- int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
- int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
- /*
- * On a two-level page table, this ends up being trivial. Thus the
- * inlining and the symmetry break with pte_alloc() that does all
- * of this out-of-line.
- */
- static inline pmd_t *pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
- {
- if (pgd_none(*pgd))
- return __pmd_alloc(mm, pgd, address);
- return pmd_offset(pgd, address);
- }
- extern int pgt_cache_water[2];
- extern int check_pgt_cache(void);
- extern void free_area_init(unsigned long * zones_size);
- extern void free_area_init_node(int nid, pg_data_t *pgdat, struct page *pmap,
- unsigned long * zones_size, unsigned long zone_start_paddr,
- unsigned long *zholes_size);
- extern void mem_init(void);
- extern void show_mem(void);
- extern void si_meminfo(struct sysinfo * val);
- extern void swapin_readahead(swp_entry_t);
- extern struct address_space swapper_space;
- #define PageSwapCache(page) ((page)->mapping == &swapper_space)
- static inline int is_page_cache_freeable(struct page * page)
- {
- return page_count(page) - !!page->buffers == 1;
- }
- extern int can_share_swap_page(struct page *);
- extern int remove_exclusive_swap_page(struct page *);
- extern void __free_pte(pte_t);
- /* mmap.c */
- extern void lock_vma_mappings(struct vm_area_struct *);
- extern void unlock_vma_mappings(struct vm_area_struct *);
- extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
- extern void __insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
- extern void build_mmap_rb(struct mm_struct *);
- extern void exit_mmap(struct mm_struct *);
- extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
- extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
- unsigned long len, unsigned long prot,
- unsigned long flag, unsigned long pgoff);
- static inline unsigned long do_mmap(struct file *file, unsigned long addr,
- unsigned long len, unsigned long prot,
- unsigned long flag, unsigned long offset)
- {
- unsigned long ret = -EINVAL;
- if ((offset + PAGE_ALIGN(len)) < offset)
- goto out;
- if (!(offset & ~PAGE_MASK))
- ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
- out:
- return ret;
- }
- extern int do_munmap(struct mm_struct *, unsigned long, size_t);
- extern unsigned long do_brk(unsigned long, unsigned long);
- static inline void __vma_unlink(struct mm_struct * mm, struct vm_area_struct * vma, struct vm_area_struct * prev)
- {
- prev->vm_next = vma->vm_next;
- rb_erase(&vma->vm_rb, &mm->mm_rb);
- if (mm->mmap_cache == vma)
- mm->mmap_cache = prev;
- }
- static inline int can_vma_merge(struct vm_area_struct * vma, unsigned long vm_flags)
- {
- if (!vma->vm_file && vma->vm_flags == vm_flags)
- return 1;
- else
- return 0;
- }
- struct zone_t;
- /* filemap.c */
- extern void remove_inode_page(struct page *);
- extern unsigned long page_unuse(struct page *);
- extern void truncate_inode_pages(struct address_space *, loff_t);
- /* generic vm_area_ops exported for stackable file systems */
- extern int filemap_sync(struct vm_area_struct *, unsigned long, size_t, unsigned int);
- extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int);
- /*
- * GFP bitmasks..
- */
- /* Zone modifiers in GFP_ZONEMASK (see linux/mmzone.h - low four bits) */
- #define __GFP_DMA 0x01
- #define __GFP_HIGHMEM 0x02
- /* Action modifiers - doesn't change the zoning */
- #define __GFP_WAIT 0x10 /* Can wait and reschedule? */
- #define __GFP_HIGH 0x20 /* Should access emergency pools? */
- #define __GFP_IO 0x40 /* Can start low memory physical IO? */
- #define __GFP_HIGHIO 0x80 /* Can start high mem physical IO? */
- #define __GFP_FS 0x100 /* Can call down to low-level FS? */
- #define GFP_NOHIGHIO (__GFP_HIGH | __GFP_WAIT | __GFP_IO)
- #define GFP_NOIO (__GFP_HIGH | __GFP_WAIT)
- #define GFP_NOFS (__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO)
- #define GFP_ATOMIC (__GFP_HIGH)
- #define GFP_USER ( __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
- #define GFP_HIGHUSER ( __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS | __GFP_HIGHMEM)
- #define GFP_KERNEL (__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
- #define GFP_NFS (__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
- #define GFP_KSWAPD ( __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
- /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some
- platforms, used as appropriate on others */
- #define GFP_DMA __GFP_DMA
- static inline unsigned int pf_gfp_mask(unsigned int gfp_mask)
- {
- /* avoid all memory balancing I/O methods if this task cannot block on I/O */
- if (current->flags & PF_NOIO)
- gfp_mask &= ~(__GFP_IO | __GFP_HIGHIO | __GFP_FS);
- return gfp_mask;
- }
-
- /* vma is the first one with address < vma->vm_end,
- * and even address < vma->vm_start. Have to extend vma. */
- static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
- {
- unsigned long grow;
- /*
- * vma->vm_start/vm_end cannot change under us because the caller is required
- * to hold the mmap_sem in write mode. We need to get the spinlock only
- * before relocating the vma range ourself.
- */
- address &= PAGE_MASK;
- spin_lock(&vma->vm_mm->page_table_lock);
- grow = (vma->vm_start - address) >> PAGE_SHIFT;
- if (vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur ||
- ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur) {
- spin_unlock(&vma->vm_mm->page_table_lock);
- return -ENOMEM;
- }
- vma->vm_start = address;
- vma->vm_pgoff -= grow;
- vma->vm_mm->total_vm += grow;
- if (vma->vm_flags & VM_LOCKED)
- vma->vm_mm->locked_vm += grow;
- spin_unlock(&vma->vm_mm->page_table_lock);
- return 0;
- }
- /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
- extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
- extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
- struct vm_area_struct **pprev);
- /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
- NULL if none. Assume start_addr < end_addr. */
- static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
- {
- struct vm_area_struct * vma = find_vma(mm,start_addr);
- if (vma && end_addr <= vma->vm_start)
- vma = NULL;
- return vma;
- }
- extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
- extern struct page * vmalloc_to_page(void *addr);
- #endif /* __KERNEL__ */
- #endif