user.h
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:3k
源码类别:

Linux/Unix编程

开发平台:

Unix_Linux

  1. /*
  2.  *  include/asm-s390/user.h
  3.  *
  4.  *  S390 version
  5.  *
  6.  *  Derived from "include/asm-i386/usr.h"
  7.  */
  8. #ifndef _S390_USER_H
  9. #define _S390_USER_H
  10. #include <asm/page.h>
  11. #include <linux/ptrace.h>
  12. /* Core file format: The core file is written in such a way that gdb
  13.    can understand it and provide useful information to the user (under
  14.    linux we use the 'trad-core' bfd).  There are quite a number of
  15.    obstacles to being able to view the contents of the floating point
  16.    registers, and until these are solved you will not be able to view the
  17.    contents of them.  Actually, you can read in the core file and look at
  18.    the contents of the user struct to find out what the floating point
  19.    registers contain.
  20.    The actual file contents are as follows:
  21.    UPAGE: 1 page consisting of a user struct that tells gdb what is present
  22.    in the file.  Directly after this is a copy of the task_struct, which
  23.    is currently not used by gdb, but it may come in useful at some point.
  24.    All of the registers are stored as part of the upage.  The upage should
  25.    always be only one page.
  26.    DATA: The data area is stored.  We use current->end_text to
  27.    current->brk to pick up all of the user variables, plus any memory
  28.    that may have been malloced.  No attempt is made to determine if a page
  29.    is demand-zero or if a page is totally unused, we just cover the entire
  30.    range.  All of the addresses are rounded in such a way that an integral
  31.    number of pages is written.
  32.    STACK: We need the stack information in order to get a meaningful
  33.    backtrace.  We need to write the data from (esp) to
  34.    current->start_stack, so we round each of these off in order to be able
  35.    to write an integer number of pages.
  36.    The minimum core file size is 3 pages, or 12288 bytes.
  37. */
  38. /*
  39.  * This is the old layout of "struct pt_regs", and
  40.  * is still the layout used by user mode (the new
  41.  * pt_regs doesn't have all registers as the kernel
  42.  * doesn't use the extra segment registers)
  43.  */
  44. /* When the kernel dumps core, it starts by dumping the user struct -
  45.    this will be used by gdb to figure out where the data and stack segments
  46.    are within the file, and what virtual addresses to use. */
  47. struct user {
  48. /* We start with the registers, to mimic the way that "memory" is returned
  49.    from the ptrace(3,...) function.  */
  50.   struct user_regs_struct regs; /* Where the registers are actually stored */
  51. /* The rest of this junk is to help gdb figure out what goes where */
  52.   unsigned long int u_tsize; /* Text segment size (pages). */
  53.   unsigned long int u_dsize; /* Data segment size (pages). */
  54.   unsigned long int u_ssize; /* Stack segment size (pages). */
  55.   unsigned long start_code;     /* Starting virtual address of text. */
  56.   unsigned long start_stack; /* Starting virtual address of stack area.
  57.    This is actually the bottom of the stack,
  58.    the top of the stack is always found in the
  59.    esp register.  */
  60.   long int signal;      /* Signal that caused the core dump. */
  61.   struct user_regs_struct *u_ar0;
  62. /* Used by gdb to help find the values for */
  63. /* the registers. */
  64.   unsigned long magic; /* To uniquely identify a core file */
  65.   char u_comm[32]; /* User command that was responsible */
  66. };
  67. #define NBPG PAGE_SIZE
  68. #define UPAGES 1
  69. #define HOST_TEXT_START_ADDR (u.start_code)
  70. #define HOST_STACK_END_ADDR (u.start_stack + u.u_ssize * NBPG)
  71. #endif /* _S390_USER_H */