pgtable.h
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:20k
- /*
- * BK Id: %F% %I% %G% %U% %#%
- */
- #ifdef __KERNEL__
- #ifndef _PPC_PGTABLE_H
- #define _PPC_PGTABLE_H
- #include <linux/config.h>
- #ifndef __ASSEMBLY__
- #include <linux/sched.h>
- #include <linux/threads.h>
- #include <asm/processor.h> /* For TASK_SIZE */
- #include <asm/mmu.h>
- #include <asm/page.h>
- #if defined(CONFIG_4xx)
- extern void local_flush_tlb_all(void);
- extern void local_flush_tlb_mm(struct mm_struct *mm);
- extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
- extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
- unsigned long end);
- #define update_mmu_cache(vma, addr, pte) do { } while (0)
- #elif defined(CONFIG_8xx)
- #define __tlbia() asm volatile ("tlbia" : : )
- static inline void local_flush_tlb_all(void)
- { __tlbia(); }
- static inline void local_flush_tlb_mm(struct mm_struct *mm)
- { __tlbia(); }
- static inline void local_flush_tlb_page(struct vm_area_struct *vma,
- unsigned long vmaddr)
- { __tlbia(); }
- static inline void local_flush_tlb_range(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- { __tlbia(); }
- #define update_mmu_cache(vma, addr, pte) do { } while (0)
- #else /* 6xx, 7xx, 7xxx cpus */
- struct mm_struct;
- struct vm_area_struct;
- extern void local_flush_tlb_all(void);
- extern void local_flush_tlb_mm(struct mm_struct *mm);
- extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
- extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
- unsigned long end);
- /*
- * This gets called at the end of handling a page fault, when
- * the kernel has put a new PTE into the page table for the process.
- * We use it to put a corresponding HPTE into the hash table
- * ahead of time, instead of waiting for the inevitable extra
- * hash-table miss exception.
- */
- extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
- #endif
- #define flush_tlb_all local_flush_tlb_all
- #define flush_tlb_mm local_flush_tlb_mm
- #define flush_tlb_page local_flush_tlb_page
- #define flush_tlb_range local_flush_tlb_range
- /*
- * This is called in munmap when we have freed up some page-table
- * pages. We don't need to do anything here, there's nothing special
- * about our page-table pages. -- paulus
- */
- static inline void flush_tlb_pgtables(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- }
- /*
- * No cache flushing is required when address mappings are
- * changed, because the caches on PowerPCs are physically
- * addressed. -- paulus
- * Also, when SMP we use the coherency (M) bit of the
- * BATs and PTEs. -- Cort
- */
- #define flush_cache_all() do { } while (0)
- #define flush_cache_mm(mm) do { } while (0)
- #define flush_cache_range(mm, a, b) do { } while (0)
- #define flush_cache_page(vma, p) do { } while (0)
- #define flush_page_to_ram(page) do { } while (0)
- extern void flush_icache_user_range(struct vm_area_struct *vma,
- struct page *page, unsigned long addr, int len);
- extern void flush_icache_range(unsigned long, unsigned long);
- extern void __flush_dcache_icache(void *page_va);
- extern void flush_dcache_page(struct page *page);
- extern void flush_icache_page(struct vm_area_struct *vma, struct page *page);
- extern unsigned long va_to_phys(unsigned long address);
- extern pte_t *va_to_pte(unsigned long address);
- extern unsigned long ioremap_bot, ioremap_base;
- #endif /* __ASSEMBLY__ */
- /*
- * The PowerPC MMU uses a hash table containing PTEs, together with
- * a set of 16 segment registers (on 32-bit implementations), to define
- * the virtual to physical address mapping.
- *
- * We use the hash table as an extended TLB, i.e. a cache of currently
- * active mappings. We maintain a two-level page table tree, much
- * like that used by the i386, for the sake of the Linux memory
- * management code. Low-level assembler code in hashtable.S
- * (procedure hash_page) is responsible for extracting ptes from the
- * tree and putting them into the hash table when necessary, and
- * updating the accessed and modified bits in the page table tree.
- */
- /*
- * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
- * We also use the two level tables, but we can put the real bits in them
- * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
- * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
- * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
- * based upon user/super access. The TLB does not have accessed nor write
- * protect. We assume that if the TLB get loaded with an entry it is
- * accessed, and overload the changed bit for write protect. We use
- * two bits in the software pte that are supposed to be set to zero in
- * the TLB entry (24 and 25) for these indicators. Although the level 1
- * descriptor contains the guarded and writethrough/copyback bits, we can
- * set these at the page level since they get copied from the Mx_TWC
- * register when the TLB entry is loaded. We will use bit 27 for guard, since
- * that is where it exists in the MD_TWC, and bit 26 for writethrough.
- * These will get masked from the level 2 descriptor at TLB load time, and
- * copied to the MD_TWC before it gets loaded.
- */
- /*
- * At present, all PowerPC 400-class processors share a similar TLB
- * architecture. The instruction and data sides share a unified,
- * 64-entry, fully-associative TLB which is maintained totally under
- * software control. In addition, the instruction side has a
- * hardware-managed, 4-entry, fully-associative TLB which serves as a
- * first level to the shared TLB. These two TLBs are known as the UTLB
- * and ITLB, respectively (see "mmu.h" for definitions).
- */
- /* PMD_SHIFT determines the size of the area mapped by the second-level page tables */
- #define PMD_SHIFT 22
- #define PMD_SIZE (1UL << PMD_SHIFT)
- #define PMD_MASK (~(PMD_SIZE-1))
- /* PGDIR_SHIFT determines what a third-level page table entry can map */
- #define PGDIR_SHIFT 22
- #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
- #define PGDIR_MASK (~(PGDIR_SIZE-1))
- /*
- * entries per page directory level: our page-table tree is two-level, so
- * we don't really have any PMD directory.
- */
- #define PTRS_PER_PTE 1024
- #define PTRS_PER_PMD 1
- #define PTRS_PER_PGD 1024
- #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
- #define FIRST_USER_PGD_NR 0
- #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
- #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
- #define pte_ERROR(e)
- printk("%s:%d: bad pte %08lx.n", __FILE__, __LINE__, pte_val(e))
- #define pmd_ERROR(e)
- printk("%s:%d: bad pmd %08lx.n", __FILE__, __LINE__, pmd_val(e))
- #define pgd_ERROR(e)
- printk("%s:%d: bad pgd %08lx.n", __FILE__, __LINE__, pgd_val(e))
- /*
- * Just any arbitrary offset to the start of the vmalloc VM area: the
- * current 64MB value just means that there will be a 64MB "hole" after the
- * physical memory until the kernel virtual memory starts. That means that
- * any out-of-bounds memory accesses will hopefully be caught.
- * The vmalloc() routines leaves a hole of 4kB between each vmalloced
- * area for the same reason. ;)
- *
- * We no longer map larger than phys RAM with the BATs so we don't have
- * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
- * about clashes between our early calls to ioremap() that start growing down
- * from ioremap_base being run into the VM area allocations (growing upwards
- * from VMALLOC_START). For this reason we have ioremap_bot to check when
- * we actually run into our mappings setup in the early boot with the VM
- * system. This really does become a problem for machines with good amounts
- * of RAM. -- Cort
- */
- #define VMALLOC_OFFSET (0x1000000) /* 16M */
- #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
- #define VMALLOC_VMADDR(x) ((unsigned long)(x))
- #define VMALLOC_END ioremap_bot
- /*
- * Bits in a linux-style PTE. These match the bits in the
- * (hardware-defined) PowerPC PTE as closely as possible.
- */
- #if defined(CONFIG_4xx)
- /* Definitions for 4xx embedded chips. */
- #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
- #define _PAGE_COHERENT 0x002 /* M: enforece memory coherence */
- #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
- #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
- #define _PAGE_USER 0x010 /* matches one of the zone permission bits */
- #define _PAGE_EXEC 0x020 /* software: i-cache coherency required */
- #define _PAGE_PRESENT 0x040 /* software: PTE contains a translation */
- #define _PAGE_DIRTY 0x100 /* C: page changed */
- #define _PAGE_RW 0x200 /* Writes permitted */
- #define _PAGE_ACCESSED 0x400 /* R: page referenced */
- #elif defined(CONFIG_8xx)
- /* Definitions for 8xx embedded chips. */
- #define _PAGE_PRESENT 0x0001 /* Page is valid */
- #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
- #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
- /* These five software bits must be masked out when the entry is loaded
- * into the TLB.
- */
- #define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
- #define _PAGE_GUARDED 0x0010 /* software: guarded access */
- #define _PAGE_WRITETHRU 0x0020 /* software: use writethrough cache */
- #define _PAGE_RW 0x0040 /* software: user write access allowed */
- #define _PAGE_ACCESSED 0x0080 /* software: page referenced */
- #define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
- #define _PAGE_DIRTY 0x0200 /* software: page changed */
- #define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
- #else /* CONFIG_6xx */
- /* Definitions for 60x, 740/750, etc. */
- #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
- #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
- #define _PAGE_USER 0x004 /* usermode access allowed */
- #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
- #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
- #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
- #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
- #define _PAGE_DIRTY 0x080 /* C: page changed */
- #define _PAGE_ACCESSED 0x100 /* R: page referenced */
- #define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
- #define _PAGE_RW 0x400 /* software: user write access allowed */
- #endif
- /* The non-standard PowerPC MMUs, which includes the 4xx and 8xx (and
- * mabe 603e) have TLB miss handlers that unconditionally set the
- * _PAGE_ACCESSED flag as a performance optimization. This causes
- * problems for the page_none() macro, just like the HASHPTE flag does
- * for the standard PowerPC MMUs. Depending upon the MMU configuration,
- * either HASHPTE or ACCESSED will have to be masked to give us a
- * proper pte_none() condition.
- */
- #ifndef _PAGE_HASHPTE
- #define _PAGE_HASHPTE 0
- #define _PTE_NONE_MASK _PAGE_ACCESSED
- #else
- #define _PTE_NONE_MASK _PAGE_HASHPTE
- #endif
- #ifndef _PAGE_SHARED
- #define _PAGE_SHARED 0
- #endif
- #ifndef _PAGE_HWWRITE
- #define _PAGE_HWWRITE 0
- #endif
- #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
- /*
- * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
- * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
- * to have it in the Linux PTE, and in fact the bit could be reused for
- * another purpose. -- paulus.
- */
- #define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED
- #define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE
- #define _PAGE_KERNEL _PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED
- #define _PAGE_IO _PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED
- #define PAGE_NONE __pgprot(_PAGE_BASE)
- #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
- #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
- #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
- #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
- #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
- #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
- #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
- #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
- #define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
- /*
- * The PowerPC can only do execute protection on a segment (256MB) basis,
- * not on a page basis. So we consider execute permission the same as read.
- * Also, write permissions imply read permissions.
- * This is the closest we can get..
- */
- #define __P000 PAGE_NONE
- #define __P001 PAGE_READONLY_X
- #define __P010 PAGE_COPY
- #define __P011 PAGE_COPY_X
- #define __P100 PAGE_READONLY
- #define __P101 PAGE_READONLY_X
- #define __P110 PAGE_COPY
- #define __P111 PAGE_COPY_X
- #define __S000 PAGE_NONE
- #define __S001 PAGE_READONLY_X
- #define __S010 PAGE_SHARED
- #define __S011 PAGE_SHARED_X
- #define __S100 PAGE_READONLY
- #define __S101 PAGE_READONLY_X
- #define __S110 PAGE_SHARED
- #define __S111 PAGE_SHARED_X
- #ifndef __ASSEMBLY__
- /*
- * ZERO_PAGE is a global shared page that is always zero: used
- * for zero-mapped memory areas etc..
- */
- extern unsigned long empty_zero_page[1024];
- #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
- #endif /* __ASSEMBLY__ */
- #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
- #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
- #define pte_clear(ptep) do { set_pte((ptep), __pte(0)); } while (0)
- #define pmd_none(pmd) (!pmd_val(pmd))
- #define pmd_bad(pmd) ((pmd_val(pmd) & ~PAGE_MASK) != 0)
- #define pmd_present(pmd) ((pmd_val(pmd) & PAGE_MASK) != 0)
- #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
- #define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))
- #ifndef __ASSEMBLY__
- /*
- * The "pgd_xxx()" functions here are trivial for a folded two-level
- * setup: the pgd is never bad, and a pmd always exists (as it's folded
- * into the pgd entry)
- */
- static inline int pgd_none(pgd_t pgd) { return 0; }
- static inline int pgd_bad(pgd_t pgd) { return 0; }
- static inline int pgd_present(pgd_t pgd) { return 1; }
- #define pgd_clear(xp) do { } while (0)
- #define pgd_page(pgd)
- ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
- /*
- * The following only work if pte_present() is true.
- * Undefined behaviour if not..
- */
- static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
- static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
- static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
- static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
- static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
- static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
- static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
- static inline pte_t pte_rdprotect(pte_t pte) {
- pte_val(pte) &= ~_PAGE_USER; return pte; }
- static inline pte_t pte_wrprotect(pte_t pte) {
- pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
- static inline pte_t pte_exprotect(pte_t pte) {
- pte_val(pte) &= ~_PAGE_EXEC; return pte; }
- static inline pte_t pte_mkclean(pte_t pte) {
- pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
- static inline pte_t pte_mkold(pte_t pte) {
- pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
- static inline pte_t pte_mkread(pte_t pte) {
- pte_val(pte) |= _PAGE_USER; return pte; }
- static inline pte_t pte_mkexec(pte_t pte) {
- pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
- static inline pte_t pte_mkwrite(pte_t pte) {
- pte_val(pte) |= _PAGE_RW; return pte; }
- static inline pte_t pte_mkdirty(pte_t pte) {
- pte_val(pte) |= _PAGE_DIRTY; return pte; }
- static inline pte_t pte_mkyoung(pte_t pte) {
- pte_val(pte) |= _PAGE_ACCESSED; return pte; }
- /*
- * Conversion functions: convert a page and protection to a page entry,
- * and a page entry and page directory to the page they refer to.
- */
- static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
- {
- pte_t pte;
- pte_val(pte) = physpage | pgprot_val(pgprot);
- return pte;
- }
- #define mk_pte(page,pgprot)
- ({
- pte_t pte;
- pte_val(pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot);
- pte;
- })
- static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
- {
- pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
- return pte;
- }
- /*
- * Atomic PTE updates.
- *
- * pte_update clears and sets bit atomically, and returns
- * the old pte value.
- */
- static inline unsigned long pte_update(pte_t *p, unsigned long clr,
- unsigned long set)
- {
- unsigned long old, tmp;
-
- __asm__ __volatile__("
- 1: lwarx %0,0,%3n
- andc %1,%0,%4n
- or %1,%1,%5n
- stwcx. %1,0,%3n
- bne- 1b"
- : "=&r" (old), "=&r" (tmp), "=m" (*p)
- : "r" (p), "r" (clr), "r" (set), "m" (*p)
- : "cc" );
- return old;
- }
- /*
- * set_pte stores a linux PTE into the linux page table.
- * On machines which use an MMU hash table we avoid changing the
- * _PAGE_HASHPTE bit.
- */
- static inline void set_pte(pte_t *ptep, pte_t pte)
- {
- #if _PAGE_HASHPTE != 0
- pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
- #else
- *ptep = pte;
- #endif
- }
- static inline int ptep_test_and_clear_young(pte_t *ptep)
- {
- return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
- }
- static inline int ptep_test_and_clear_dirty(pte_t *ptep)
- {
- return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
- }
- static inline pte_t ptep_get_and_clear(pte_t *ptep)
- {
- return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
- }
- static inline void ptep_set_wrprotect(pte_t *ptep)
- {
- pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
- }
- static inline void ptep_mkdirty(pte_t *ptep)
- {
- pte_update(ptep, 0, _PAGE_DIRTY);
- }
- #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
- #define pmd_page(pmd) (pmd_val(pmd))
- /* to find an entry in a kernel page-table-directory */
- #define pgd_offset_k(address) pgd_offset(&init_mm, address)
- /* to find an entry in a page-table-directory */
- #define pgd_index(address) ((address) >> PGDIR_SHIFT)
- #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
- /* Find an entry in the second-level page table.. */
- static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
- {
- return (pmd_t *) dir;
- }
- /* Find an entry in the third-level page table.. */
- static inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
- {
- return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
- }
- extern pgd_t swapper_pg_dir[1024];
- extern void paging_init(void);
- /*
- * When flushing the tlb entry for a page, we also need to flush the hash
- * table entry. flush_hash_page is assembler (for speed) in hashtable.S.
- */
- extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep);
- /* Add an HPTE to the hash table */
- extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep);
- /*
- * Encode and decode a swap entry.
- * Note that the bits we use in a PTE for representing a swap entry
- * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
- * (if used). -- paulus
- */
- #define SWP_TYPE(entry) ((entry).val & 0x3f)
- #define SWP_OFFSET(entry) ((entry).val >> 6)
- #define SWP_ENTRY(type, offset) ((swp_entry_t) { (type) | ((offset) << 6) })
- #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
- #define swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
- /* CONFIG_APUS */
- /* For virtual address to physical address conversion */
- extern void cache_clear(__u32 addr, int length);
- extern void cache_push(__u32 addr, int length);
- extern int mm_end_of_chunk (unsigned long addr, int len);
- extern unsigned long iopa(unsigned long addr);
- extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
- /* Values for nocacheflag and cmode */
- /* These are not used by the APUS kernel_map, but prevents
- compilation errors. */
- #define IOMAP_FULL_CACHING 0
- #define IOMAP_NOCACHE_SER 1
- #define IOMAP_NOCACHE_NONSER 2
- #define IOMAP_NO_COPYBACK 3
- /*
- * Map some physical address range into the kernel address space.
- */
- extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
- int nocacheflag, unsigned long *memavailp );
- /*
- * Set cache mode of (kernel space) address range.
- */
- extern void kernel_set_cachemode (unsigned long address, unsigned long size,
- unsigned int cmode);
- /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
- #define kern_addr_valid(addr) (1)
- #define io_remap_page_range remap_page_range
- /*
- * No page table caches to initialise
- */
- #define pgtable_cache_init() do { } while (0)
- #endif /* __ASSEMBLY__ */
- #endif /* _PPC_PGTABLE_H */
- #endif /* __KERNEL__ */