init.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:25k
- /*
- * linux/arch/parisc/mm/init.c
- *
- * Copyright (C) 1995 Linus Torvalds
- * Copyright 1999 SuSE GmbH
- * changed by Philipp Rumpf
- * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
- *
- */
- #include <linux/config.h>
- #include <linux/mm.h>
- #include <linux/bootmem.h>
- #include <linux/delay.h>
- #include <linux/init.h>
- #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
- #include <linux/blk.h> /* for initrd_start and initrd_end */
- #include <linux/swap.h>
- #include <linux/unistd.h>
- #include <asm/pgalloc.h>
- #include <asm/tlb.h>
- mmu_gather_t mmu_gathers[NR_CPUS];
- extern char _text; /* start of kernel code, defined by linker */
- extern int data_start;
- extern char _end; /* end of BSS, defined by linker */
- extern char __init_begin, __init_end;
- #ifdef CONFIG_DISCONTIGMEM
- struct node_map_data node_data[MAX_PHYSMEM_RANGES];
- bootmem_data_t bmem_data[MAX_PHYSMEM_RANGES];
- unsigned char *chunkmap;
- unsigned int maxchunkmap;
- #endif
- static struct resource data_resource = {
- name: "Kernel data",
- flags: IORESOURCE_BUSY | IORESOURCE_MEM,
- };
- static struct resource code_resource = {
- name: "Kernel code",
- flags: IORESOURCE_BUSY | IORESOURCE_MEM,
- };
- static struct resource pdcdata_resource = {
- name: "PDC data (Page Zero)",
- start: 0,
- end: 0x9ff,
- flags: IORESOURCE_BUSY | IORESOURCE_MEM,
- };
- static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
- static unsigned long max_pfn;
- /* The following array is initialized from the firmware specific
- * information retrieved in kernel/inventory.c.
- */
- physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
- int npmem_ranges;
- #ifdef __LP64__
- #define MAX_MEM (~0UL)
- #else /* !__LP64__ */
- #define MAX_MEM (3584U*1024U*1024U)
- #endif /* !__LP64__ */
- static unsigned long mem_limit = MAX_MEM;
- static void __init mem_limit_func(void)
- {
- char *cp, *end;
- unsigned long limit;
- extern char saved_command_line[];
- /* We need this before __setup() functions are called */
- limit = MAX_MEM;
- for (cp = saved_command_line; *cp; ) {
- if (memcmp(cp, "mem=", 4) == 0) {
- cp += 4;
- limit = memparse(cp, &end);
- if (end != cp)
- break;
- cp = end;
- } else {
- while (*cp != ' ' && *cp)
- ++cp;
- while (*cp == ' ')
- ++cp;
- }
- }
- if (limit < mem_limit)
- mem_limit = limit;
- }
- #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
- static void __init setup_bootmem(void)
- {
- unsigned long bootmap_size;
- unsigned long mem_max;
- unsigned long bootmap_pages;
- unsigned long bootmap_start_pfn;
- unsigned long bootmap_pfn;
- #ifndef CONFIG_DISCONTIGMEM
- physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
- int npmem_holes;
- #endif
- int i, sysram_resource_count;
- disable_sr_hashing(); /* Turn off space register hashing */
- #ifdef CONFIG_DISCONTIGMEM
- /*
- * The below is still true as of 2.4.2. If this is ever fixed,
- * we can remove this warning!
- */
- printk(KERN_WARNING "nn");
- printk(KERN_WARNING "CONFIG_DISCONTIGMEM is enabled, which is probably a mistake. Thisn");
- printk(KERN_WARNING "option can lead to heavy swapping, even when there are gigabytesn");
- printk(KERN_WARNING "of free memory.nn");
- #endif
- #ifdef __LP64__
- #ifndef CONFIG_DISCONTIGMEM
- /*
- * Sort the ranges. Since the number of ranges is typically
- * small, and performance is not an issue here, just do
- * a simple insertion sort.
- */
- for (i = 1; i < npmem_ranges; i++) {
- int j;
- for (j = i; j > 0; j--) {
- unsigned long tmp;
- if (pmem_ranges[j-1].start_pfn <
- pmem_ranges[j].start_pfn) {
- break;
- }
- tmp = pmem_ranges[j-1].start_pfn;
- pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
- pmem_ranges[j].start_pfn = tmp;
- tmp = pmem_ranges[j-1].pages;
- pmem_ranges[j-1].pages = pmem_ranges[j].pages;
- pmem_ranges[j].pages = tmp;
- }
- }
- /*
- * Throw out ranges that are too far apart (controlled by
- * MAX_GAP). If CONFIG_DISCONTIGMEM wasn't implemented so
- * poorly, we would recommend enabling that option, but,
- * until it is fixed, this is the best way to go.
- */
- for (i = 1; i < npmem_ranges; i++) {
- if (pmem_ranges[i].start_pfn -
- (pmem_ranges[i-1].start_pfn +
- pmem_ranges[i-1].pages) > MAX_GAP) {
- npmem_ranges = i;
- break;
- }
- }
- #endif
- if (npmem_ranges > 1) {
- /* Print the memory ranges */
- printk(KERN_INFO "Memory Ranges:n");
- for (i = 0; i < npmem_ranges; i++) {
- unsigned long start;
- unsigned long size;
- size = (pmem_ranges[i].pages << PAGE_SHIFT);
- start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
- printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mbn",
- i,start, start + (size - 1), size >> 20);
- }
- }
- #endif /* __LP64__ */
- #if 1
- /* KLUGE! this really belongs in kernel/resource.c! */
- iomem_resource.end = ~0UL;
- #endif
- sysram_resource_count = npmem_ranges;
- for (i = 0; i < sysram_resource_count; i++) {
- struct resource *res = &sysram_resources[i];
- res->name = "System RAM";
- res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
- res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
- res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
- request_resource(&iomem_resource, res);
- }
- /*
- * For 32 bit kernels we limit the amount of memory we can
- * support, in order to preserve enough kernel address space
- * for other purposes. For 64 bit kernels we don't normally
- * limit the memory, but this mechanism can be used to
- * artificially limit the amount of memory (and it is written
- * to work with multiple memory ranges).
- */
- mem_limit_func(); /* check for "mem=" argument */
- mem_max = 0;
- for (i = 0; i < npmem_ranges; i++) {
- unsigned long rsize;
- rsize = pmem_ranges[i].pages << PAGE_SHIFT;
- if ((mem_max + rsize) > mem_limit) {
- printk(KERN_WARNING "Memory truncated to %ld Mbn", mem_limit >> 20);
- if (mem_max == mem_limit)
- npmem_ranges = i;
- else {
- pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
- - (mem_max >> PAGE_SHIFT);
- npmem_ranges = i + 1;
- mem_max = mem_limit;
- }
- break;
- }
- mem_max += rsize;
- }
- printk(KERN_INFO "Total Memory: %ld Mbn",mem_max >> 20);
- #ifndef CONFIG_DISCONTIGMEM
- /* Merge the ranges, keeping track of the holes */
- {
- unsigned long end_pfn;
- unsigned long hole_pages;
- npmem_holes = 0;
- end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
- for (i = 1; i < npmem_ranges; i++) {
- hole_pages = pmem_ranges[i].start_pfn - end_pfn;
- if (hole_pages) {
- pmem_holes[npmem_holes].start_pfn = end_pfn;
- pmem_holes[npmem_holes++].pages = hole_pages;
- end_pfn += hole_pages;
- }
- end_pfn += pmem_ranges[i].pages;
- }
- pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
- npmem_ranges = 1;
- }
- #endif
- bootmap_pages = 0;
- for (i = 0; i < npmem_ranges; i++)
- bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
- bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
- #ifdef CONFIG_DISCONTIGMEM
- for (i = 0; i < npmem_ranges; i++)
- node_data[i].pg_data.bdata = &bmem_data[i];
- #endif
- /*
- * Initialize and free the full range of memory in each range.
- * Note that the only writing these routines do are to the bootmap,
- * and we've made sure to locate the bootmap properly so that they
- * won't be writing over anything important.
- */
- bootmap_pfn = bootmap_start_pfn;
- max_pfn = 0;
- for (i = 0; i < npmem_ranges; i++) {
- unsigned long start_pfn;
- unsigned long npages;
- start_pfn = pmem_ranges[i].start_pfn;
- npages = pmem_ranges[i].pages;
- bootmap_size = init_bootmem_node(NODE_DATA(i),
- bootmap_pfn,
- start_pfn,
- (start_pfn + npages) );
- free_bootmem_node(NODE_DATA(i),
- (start_pfn << PAGE_SHIFT),
- (npages << PAGE_SHIFT) );
- bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
- if ((start_pfn + npages) > max_pfn)
- max_pfn = start_pfn + npages;
- }
- if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
- printk(KERN_WARNING "WARNING! bootmap sizing is messed up!n");
- BUG();
- }
- /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
- #define PDC_CONSOLE_IO_IODC_SIZE 32768
- reserve_bootmem_node(NODE_DATA(0), 0UL,
- (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
- reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
- (unsigned long)(&_end - &_text));
- reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
- ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
- #ifndef CONFIG_DISCONTIGMEM
- /* reserve the holes */
- for (i = 0; i < npmem_holes; i++) {
- reserve_bootmem_node(NODE_DATA(0),
- (pmem_holes[i].start_pfn << PAGE_SHIFT),
- (pmem_holes[i].pages << PAGE_SHIFT));
- }
- #endif
- #ifdef CONFIG_BLK_DEV_INITRD
- if (initrd_start) {
- printk(KERN_INFO "initrd: %08lx-%08lxn", initrd_start, initrd_end);
- if (__pa(initrd_start) < mem_max) {
- unsigned long initrd_reserve;
- if (__pa(initrd_end) > mem_max) {
- initrd_reserve = mem_max - __pa(initrd_start);
- } else {
- initrd_reserve = initrd_end - initrd_start;
- }
- initrd_below_start_ok = 1;
- printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
- reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
- }
- }
- #endif
- data_resource.start = virt_to_phys(&data_start);
- data_resource.end = virt_to_phys(&_end)-1;
- code_resource.start = virt_to_phys(&_text);
- code_resource.end = virt_to_phys(&data_start)-1;
- /* We don't know which region the kernel will be in, so try
- * all of them.
- */
- for (i = 0; i < sysram_resource_count; i++) {
- struct resource *res = &sysram_resources[i];
- request_resource(res, &code_resource);
- request_resource(res, &data_resource);
- }
- request_resource(&sysram_resources[0], &pdcdata_resource);
- }
- void free_initmem(void)
- {
- /* FIXME: */
- #if 0
- printk(KERN_INFO "NOT FREEING INITMEM (%dk)n",
- (&__init_end - &__init_begin) >> 10);
- return;
- #endif
- unsigned long addr;
-
- printk(KERN_INFO "Freeing unused kernel memory: ");
- #if 1
- /* Attempt to catch anyone trying to execute code here
- * by filling the page with BRK insns.
- *
- * If we disable interrupts for all CPUs, then IPI stops working.
- * Kinda breaks the global cache flushing.
- */
- local_irq_disable();
- memset(&__init_begin, 0x00,
- (unsigned long)&__init_end - (unsigned long)&__init_begin);
- flush_data_cache();
- asm volatile("sync" : : );
- flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
- asm volatile("sync" : : );
- local_irq_enable();
- #endif
-
- addr = (unsigned long)(&__init_begin);
- for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
- ClearPageReserved(virt_to_page(addr));
- set_page_count(virt_to_page(addr), 1);
- free_page(addr);
- num_physpages++;
- }
- printk("%luk freedn", (unsigned long)(&__init_end - &__init_begin) >> 10);
- }
- /*
- * Just an arbitrary offset to serve as a "hole" between mapping areas
- * (between top of physical memory and a potential pcxl dma mapping
- * area, and below the vmalloc mapping area).
- *
- * The current 32K value just means that there will be a 32K "hole"
- * between mapping areas. That means that any out-of-bounds memory
- * accesses will hopefully be caught. The vmalloc() routines leaves
- * a hole of 4kB between each vmalloced area for the same reason.
- */
- #define MAP_START 0x4000 /* Leave room for gateway page expansion */
- #define VM_MAP_OFFSET (32*1024)
- #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET)
- & ~(VM_MAP_OFFSET-1)))
- void *vmalloc_start;
- #ifdef CONFIG_PA11
- unsigned long pcxl_dma_start;
- #endif
- void __init mem_init(void)
- {
- int i;
- high_memory = __va((max_pfn << PAGE_SHIFT));
- max_mapnr = (virt_to_page(high_memory - 1) - mem_map) + 1;
- num_physpages = 0;
- for (i = 0; i < npmem_ranges; i++)
- num_physpages += free_all_bootmem_node(NODE_DATA(i));
- printk(KERN_INFO "Memory: %luk availablen", num_physpages << (PAGE_SHIFT-10));
- #ifdef CONFIG_PA11
- if (hppa_dma_ops == &pcxl_dma_ops) {
- pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
- vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
- }
- else {
- pcxl_dma_start = 0;
- vmalloc_start = SET_MAP_OFFSET(MAP_START);
- }
- #else
- vmalloc_start = SET_MAP_OFFSET(MAP_START);
- #endif
- }
- int do_check_pgt_cache(int low, int high)
- {
- return 0;
- }
- unsigned long *empty_zero_page;
- void show_mem(void)
- {
- int i,free = 0,total = 0,reserved = 0;
- int shared = 0, cached = 0;
- printk(KERN_INFO "Mem-info:n");
- show_free_areas();
- printk(KERN_INFO "Free swap: %6dkBn",nr_swap_pages<<(PAGE_SHIFT-10));
- i = max_mapnr;
- while (i-- > 0) {
- total++;
- if (PageReserved(mem_map+i))
- reserved++;
- else if (PageSwapCache(mem_map+i))
- cached++;
- else if (!atomic_read(&mem_map[i].count))
- free++;
- else
- shared += atomic_read(&mem_map[i].count) - 1;
- }
- printk(KERN_INFO "%d pages of RAMn", total);
- printk(KERN_INFO "%d reserved pagesn", reserved);
- printk(KERN_INFO "%d pages sharedn", shared);
- printk(KERN_INFO "%d pages swap cachedn", cached);
- show_buffers();
- }
- static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
- {
- pgd_t *pg_dir;
- pmd_t *pmd;
- pte_t *pg_table;
- unsigned long end_paddr;
- unsigned long start_pmd;
- unsigned long start_pte;
- unsigned long tmp1;
- unsigned long tmp2;
- unsigned long address;
- unsigned long ro_start;
- unsigned long ro_end;
- unsigned long fv_addr;
- unsigned long gw_addr;
- extern const unsigned long fault_vector_20;
- extern void * const linux_gateway_page;
- ro_start = __pa((unsigned long)&_text);
- ro_end = __pa((unsigned long)&data_start);
- fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
- gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
- end_paddr = start_paddr + size;
- pg_dir = pgd_offset_k(start_vaddr);
- #if PTRS_PER_PMD == 1
- start_pmd = 0;
- #else
- start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
- #endif
- start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
- address = start_paddr;
- while (address < end_paddr) {
- #if PTRS_PER_PMD == 1
- pmd = (pmd_t *)__pa(pg_dir);
- #else
- pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
- /*
- * pmd is physical at this point
- */
- if (!pmd) {
- pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
- pmd = (pmd_t *) __pa(pmd);
- }
- pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
- #endif
- pg_dir++;
- /* now change pmd to kernel virtual addresses */
- pmd = (pmd_t *)__va(pmd) + start_pmd;
- for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
- /*
- * pg_table is physical at this point
- */
- pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
- if (!pg_table) {
- pg_table = (pte_t *)
- alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
- pg_table = (pte_t *) __pa(pg_table);
- }
- pmd_val(*pmd) = _PAGE_TABLE |
- (unsigned long) pg_table;
- /* now change pg_table to kernel virtual addresses */
- pg_table = (pte_t *) __va(pg_table) + start_pte;
- for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
- pte_t pte;
- #if !defined(CONFIG_KWDB) && !defined(CONFIG_STI_CONSOLE)
- #warning STI console should explicitly allocate executable pages but does not
- /* KWDB needs to write kernel text when setting break points.
- **
- ** The right thing to do seems like KWDB modify only the pte which
- ** has a break point on it...otherwise we might mask worse bugs.
- */
- /*
- * Map the fault vector writable so we can
- * write the HPMC checksum.
- */
- if (address >= ro_start && address < ro_end
- && address != fv_addr
- && address != gw_addr)
- pte = __mk_pte(address, PAGE_KERNEL_RO);
- else
- #endif
- pte = __mk_pte(address, pgprot);
- if (address >= end_paddr)
- pte_val(pte) = 0;
- set_pte(pg_table, pte);
- address += PAGE_SIZE;
- }
- start_pte = 0;
- if (address >= end_paddr)
- break;
- }
- start_pmd = 0;
- }
- }
- /*
- * pagetable_init() sets up the page tables
- *
- * Note that gateway_init() places the Linux gateway page at page 0.
- * Since gateway pages cannot be dereferenced this has the desirable
- * side effect of trapping those pesky NULL-reference errors in the
- * kernel.
- */
- static void __init pagetable_init(void)
- {
- int range;
- printk("pagetable_initn");
- /* Map each physical memory range to its kernel vaddr */
- for (range = 0; range < npmem_ranges; range++) {
- unsigned long start_paddr;
- unsigned long end_paddr;
- unsigned long size;
- start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
- end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
- size = pmem_ranges[range].pages << PAGE_SHIFT;
- map_pages((unsigned long)__va(start_paddr), start_paddr,
- size, PAGE_KERNEL);
- }
- #ifdef CONFIG_BLK_DEV_INITRD
- if (initrd_end && initrd_end > mem_limit) {
- printk("initrd: mapping %08lx-%08lxn", initrd_start, initrd_end);
- map_pages(initrd_start, __pa(initrd_start),
- initrd_end - initrd_start, PAGE_KERNEL);
- }
- #endif
- empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
- memset(empty_zero_page, 0, PAGE_SIZE);
- }
- static void __init gateway_init(void)
- {
- unsigned long linux_gateway_page_addr;
- /* FIXME: This is 'const' in order to trick the compiler
- into not treating it as DP-relative data. */
- extern void * const linux_gateway_page;
- linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
- /*
- * Setup Linux Gateway page.
- *
- * The Linux gateway page will reside in kernel space (on virtual
- * page 0), so it doesn't need to be aliased into user space.
- */
- map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
- PAGE_SIZE, PAGE_GATEWAY);
- }
- void
- map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
- {
- pgd_t *pg_dir;
- pmd_t *pmd;
- pte_t *pg_table;
- unsigned long start_pmd;
- unsigned long start_pte;
- unsigned long address;
- unsigned long hpux_gw_page_addr;
- /* FIXME: This is 'const' in order to trick the compiler
- into not treating it as DP-relative data. */
- extern void * const hpux_gateway_page;
- hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
- /*
- * Setup HP-UX Gateway page.
- *
- * The HP-UX gateway page resides in the user address space,
- * so it needs to be aliased into each process.
- */
- pg_dir = pgd_offset(mm,hpux_gw_page_addr);
- #if PTRS_PER_PMD == 1
- start_pmd = 0;
- #else
- start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
- #endif
- start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
- address = __pa(&hpux_gateway_page);
- #if PTRS_PER_PMD == 1
- pmd = (pmd_t *)__pa(pg_dir);
- #else
- pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
- /*
- * pmd is physical at this point
- */
- if (!pmd) {
- pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
- pmd = (pmd_t *) __pa(pmd);
- }
- pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
- #endif
- /* now change pmd to kernel virtual addresses */
- pmd = (pmd_t *)__va(pmd) + start_pmd;
- /*
- * pg_table is physical at this point
- */
- pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
- if (!pg_table)
- pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
- pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table;
- /* now change pg_table to kernel virtual addresses */
- pg_table = (pte_t *) __va(pg_table) + start_pte;
- set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
- }
- extern void flush_tlb_all_local(void);
- void __init paging_init(void)
- {
- int i;
- setup_bootmem();
- pagetable_init();
- gateway_init();
- flush_cache_all_local(); /* start with known state */
- flush_tlb_all_local();
- for (i = 0; i < npmem_ranges; i++) {
- unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0, };
- zones_size[ZONE_DMA] = pmem_ranges[i].pages;
- free_area_init_node(i,NODE_DATA(i),NULL,zones_size,
- (pmem_ranges[i].start_pfn << PAGE_SHIFT),0);
- }
- #ifdef CONFIG_DISCONTIGMEM
- /*
- * Initialize support for virt_to_page() macro.
- *
- * Note that MAX_ADDRESS is the largest virtual address that
- * we can map. However, since we map all physical memory into
- * the kernel address space, it also has an effect on the maximum
- * physical address we can map (MAX_ADDRESS - PAGE_OFFSET).
- */
- maxchunkmap = MAX_ADDRESS >> CHUNKSHIFT;
- chunkmap = (unsigned char *)alloc_bootmem(maxchunkmap);
- for (i = 0; i < maxchunkmap; i++)
- chunkmap[i] = BADCHUNK;
- for (i = 0; i < npmem_ranges; i++) {
- ADJ_NODE_MEM_MAP(i) = NODE_MEM_MAP(i) - pmem_ranges[i].start_pfn;
- {
- unsigned long chunk_paddr;
- unsigned long end_paddr;
- int chunknum;
- chunk_paddr = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
- end_paddr = chunk_paddr + (pmem_ranges[i].pages << PAGE_SHIFT);
- chunk_paddr &= CHUNKMASK;
- chunknum = (int)CHUNKNUM(chunk_paddr);
- while (chunk_paddr < end_paddr) {
- if (chunknum >= maxchunkmap)
- goto badchunkmap1;
- if (chunkmap[chunknum] != BADCHUNK)
- goto badchunkmap2;
- chunkmap[chunknum] = (unsigned char)i;
- chunk_paddr += CHUNKSZ;
- chunknum++;
- }
- }
- }
- return;
- badchunkmap1:
- panic("paging_init: Physical address exceeds maximum address space!n");
- badchunkmap2:
- panic("paging_init: Collision in chunk map array. CHUNKSZ needs to be smallern");
- #endif
- }
- #ifdef CONFIG_PA20
- /*
- * Currently, all PA20 chips have 18 bit protection id's, which is the
- * limiting factor (space ids are 32 bits).
- */
- #define NR_SPACE_IDS 262144
- #else
- /*
- * Currently we have a one-to-one relationship between space id's and
- * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
- * support 15 bit protection id's, so that is the limiting factor.
- * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
- * probably not worth the effort for a special case here.
- */
- #define NR_SPACE_IDS 32768
- #endif /* !CONFIG_PA20 */
- #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
- #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
- static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
- static unsigned long dirty_space_id[SID_ARRAY_SIZE];
- static unsigned long space_id_index;
- static unsigned long free_space_ids = NR_SPACE_IDS - 1;
- static unsigned long dirty_space_ids = 0;
- static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED;
- unsigned long alloc_sid(void)
- {
- unsigned long index;
- spin_lock(&sid_lock);
- if (free_space_ids == 0) {
- if (dirty_space_ids != 0) {
- spin_unlock(&sid_lock);
- flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
- spin_lock(&sid_lock);
- }
- if (free_space_ids == 0)
- BUG();
- }
- free_space_ids--;
- index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
- space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
- space_id_index = index;
- spin_unlock(&sid_lock);
- return index << SPACEID_SHIFT;
- }
- void free_sid(unsigned long spaceid)
- {
- unsigned long index = spaceid >> SPACEID_SHIFT;
- unsigned long *dirty_space_offset;
- dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
- index &= (BITS_PER_LONG - 1);
- spin_lock(&sid_lock);
- if (*dirty_space_offset & (1L << index))
- BUG(); /* attempt to free space id twice */
- *dirty_space_offset |= (1L << index);
- dirty_space_ids++;
- spin_unlock(&sid_lock);
- }
- #ifdef CONFIG_SMP
- static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
- {
- int i;
- /* NOTE: sid_lock must be held upon entry */
- *ndirtyptr = dirty_space_ids;
- if (dirty_space_ids != 0) {
- for (i = 0; i < SID_ARRAY_SIZE; i++) {
- dirty_array[i] = dirty_space_id[i];
- dirty_space_id[i] = 0;
- }
- dirty_space_ids = 0;
- }
- return;
- }
- static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
- {
- int i;
- /* NOTE: sid_lock must be held upon entry */
- if (ndirty != 0) {
- for (i = 0; i < SID_ARRAY_SIZE; i++) {
- space_id[i] ^= dirty_array[i];
- }
- free_space_ids += ndirty;
- space_id_index = 0;
- }
- }
- #else /* CONFIG_SMP */
- static void recycle_sids(void)
- {
- int i;
- /* NOTE: sid_lock must be held upon entry */
- if (dirty_space_ids != 0) {
- for (i = 0; i < SID_ARRAY_SIZE; i++) {
- space_id[i] ^= dirty_space_id[i];
- dirty_space_id[i] = 0;
- }
- free_space_ids += dirty_space_ids;
- dirty_space_ids = 0;
- space_id_index = 0;
- }
- }
- #endif
- /*
- * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
- * purged, we can safely reuse the space ids that were released but
- * not flushed from the tlb.
- */
- #ifdef CONFIG_SMP
- static unsigned long recycle_ndirty;
- static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
- static unsigned int recycle_inuse = 0;
- void flush_tlb_all(void)
- {
- int do_recycle;
- do_recycle = 0;
- spin_lock(&sid_lock);
- if (dirty_space_ids > RECYCLE_THRESHOLD) {
- if (recycle_inuse) {
- BUG(); /* FIXME: Use a semaphore/wait queue here */
- }
- get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
- recycle_inuse++;
- do_recycle++;
- }
- spin_unlock(&sid_lock);
- smp_call_function((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
- flush_tlb_all_local();
- if (do_recycle) {
- spin_lock(&sid_lock);
- recycle_sids(recycle_ndirty,recycle_dirty_array);
- recycle_inuse = 0;
- spin_unlock(&sid_lock);
- }
- }
- #else
- void flush_tlb_all(void)
- {
- spin_lock(&sid_lock);
- flush_tlb_all_local();
- recycle_sids();
- spin_unlock(&sid_lock);
- }
- #endif
- #ifdef CONFIG_BLK_DEV_INITRD
- void free_initrd_mem(unsigned long start, unsigned long end)
- {
- #if 0
- if (start < end)
- printk(KERN_INFO "Freeing initrd memory: %ldk freedn", (end - start) >> 10);
- for (; start < end; start += PAGE_SIZE) {
- ClearPageReserved(virt_to_page(start));
- set_page_count(virt_to_page(start), 1);
- free_page(start);
- num_physpages++;
- }
- #endif
- }
- #endif
- void si_meminfo(struct sysinfo *val)
- {
- val->totalram = num_physpages;
- val->sharedram = 0;
- val->freeram = nr_free_pages();
- val->bufferram = atomic_read(&buffermem_pages);
- val->totalhigh = 0;
- val->freehigh = 0;
- val->mem_unit = PAGE_SIZE;
- return;
- }