smpboot.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:29k
- /*
- * x86 SMP booting functions
- *
- * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
- * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
- *
- * Much of the core SMP work is based on previous work by Thomas Radke, to
- * whom a great many thanks are extended.
- *
- * Thanks to Intel for making available several different Pentium,
- * Pentium Pro and Pentium-II/Xeon MP machines.
- * Original development of Linux SMP code supported by Caldera.
- *
- * This code is released under the GNU General Public License version 2 or
- * later.
- *
- * Fixes
- * Felix Koop : NR_CPUS used properly
- * Jose Renau : Handle single CPU case.
- * Alan Cox : By repeated request 8) - Total BogoMIP report.
- * Greg Wright : Fix for kernel stacks panic.
- * Erich Boleyn : MP v1.4 and additional changes.
- * Matthias Sattler : Changes for 2.1 kernel map.
- * Michel Lespinasse : Changes for 2.1 kernel map.
- * Michael Chastain : Change trampoline.S to gnu as.
- * Alan Cox : Dumb bug: 'B' step PPro's are fine
- * Ingo Molnar : Added APIC timers, based on code
- * from Jose Renau
- * Ingo Molnar : various cleanups and rewrites
- * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
- * Maciej W. Rozycki : Bits for genuine 82489DX APICs
- * Martin J. Bligh : Added support for multi-quad systems
- */
- #include <linux/config.h>
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/kernel_stat.h>
- #include <linux/smp_lock.h>
- #include <linux/irq.h>
- #include <linux/bootmem.h>
- #include <linux/delay.h>
- #include <linux/mc146818rtc.h>
- #include <asm/mtrr.h>
- #include <asm/pgalloc.h>
- #include <asm/smpboot.h>
- /* Set if we find a B stepping CPU */
- static int smp_b_stepping;
- /* Setup configured maximum number of CPUs to activate */
- static int max_cpus = -1;
- /* Total count of live CPUs */
- int smp_num_cpus = 1;
- /* Number of siblings per CPU package */
- int smp_num_siblings = 1;
- int __initdata phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */
- /* Bitmask of currently online CPUs */
- unsigned long cpu_online_map;
- static volatile unsigned long cpu_callin_map;
- static volatile unsigned long cpu_callout_map;
- /* Per CPU bogomips and other parameters */
- struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
- /* Set when the idlers are all forked */
- int smp_threads_ready;
- /*
- * Setup routine for controlling SMP activation
- *
- * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
- * activation entirely (the MPS table probe still happens, though).
- *
- * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
- * greater than 0, limits the maximum number of CPUs activated in
- * SMP mode to <NUM>.
- */
- static int __init nosmp(char *str)
- {
- max_cpus = 0;
- return 1;
- }
- __setup("nosmp", nosmp);
- static int __init maxcpus(char *str)
- {
- get_option(&str, &max_cpus);
- return 1;
- }
- __setup("maxcpus=", maxcpus);
- /*
- * Trampoline 80x86 program as an array.
- */
- extern unsigned char trampoline_data [];
- extern unsigned char trampoline_end [];
- static unsigned char *trampoline_base;
- /*
- * Currently trivial. Write the real->protected mode
- * bootstrap into the page concerned. The caller
- * has made sure it's suitably aligned.
- */
- static unsigned long __init setup_trampoline(void)
- {
- memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
- return virt_to_phys(trampoline_base);
- }
- /*
- * We are called very early to get the low memory for the
- * SMP bootup trampoline page.
- */
- void __init smp_alloc_memory(void)
- {
- trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
- /*
- * Has to be in very low memory so we can execute
- * real-mode AP code.
- */
- if (__pa(trampoline_base) >= 0x9F000)
- BUG();
- }
- /*
- * The bootstrap kernel entry code has set these up. Save them for
- * a given CPU
- */
- void __init smp_store_cpu_info(int id)
- {
- struct cpuinfo_x86 *c = cpu_data + id;
- *c = boot_cpu_data;
- c->pte_quick = 0;
- c->pmd_quick = 0;
- c->pgd_quick = 0;
- c->pgtable_cache_sz = 0;
- identify_cpu(c);
- /*
- * Mask B, Pentium, but not Pentium MMX
- */
- if (c->x86_vendor == X86_VENDOR_INTEL &&
- c->x86 == 5 &&
- c->x86_mask >= 1 && c->x86_mask <= 4 &&
- c->x86_model <= 3)
- /*
- * Remember we have B step Pentia with bugs
- */
- smp_b_stepping = 1;
- }
- /*
- * Architecture specific routine called by the kernel just before init is
- * fired off. This allows the BP to have everything in order [we hope].
- * At the end of this all the APs will hit the system scheduling and off
- * we go. Each AP will load the system gdt's and jump through the kernel
- * init into idle(). At this point the scheduler will one day take over
- * and give them jobs to do. smp_callin is a standard routine
- * we use to track CPUs as they power up.
- */
- static atomic_t smp_commenced = ATOMIC_INIT(0);
- void __init smp_commence(void)
- {
- /*
- * Lets the callins below out of their loop.
- */
- Dprintk("Setting commenced=1, go go gon");
- wmb();
- atomic_set(&smp_commenced,1);
- }
- /*
- * TSC synchronization.
- *
- * We first check wether all CPUs have their TSC's synchronized,
- * then we print a warning if not, and always resync.
- */
- static atomic_t tsc_start_flag = ATOMIC_INIT(0);
- static atomic_t tsc_count_start = ATOMIC_INIT(0);
- static atomic_t tsc_count_stop = ATOMIC_INIT(0);
- static unsigned long long tsc_values[NR_CPUS];
- #define NR_LOOPS 5
- extern unsigned long fast_gettimeoffset_quotient;
- /*
- * accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit
- * multiplication. Not terribly optimized but we need it at boot time only
- * anyway.
- *
- * result == a / b
- * == (a1 + a2*(2^32)) / b
- * == a1/b + a2*(2^32/b)
- * == a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b
- * ^---- (this multiplication can overflow)
- */
- static unsigned long long __init div64 (unsigned long long a, unsigned long b0)
- {
- unsigned int a1, a2;
- unsigned long long res;
- a1 = ((unsigned int*)&a)[0];
- a2 = ((unsigned int*)&a)[1];
- res = a1/b0 +
- (unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) +
- a2 / b0 +
- (a2 * (0xffffffff % b0)) / b0;
- return res;
- }
- static void __init synchronize_tsc_bp (void)
- {
- int i;
- unsigned long long t0;
- unsigned long long sum, avg;
- long long delta;
- unsigned long one_usec;
- int buggy = 0;
- printk("checking TSC synchronization across CPUs: ");
- one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2);
- atomic_set(&tsc_start_flag, 1);
- wmb();
- /*
- * We loop a few times to get a primed instruction cache,
- * then the last pass is more or less synchronized and
- * the BP and APs set their cycle counters to zero all at
- * once. This reduces the chance of having random offsets
- * between the processors, and guarantees that the maximum
- * delay between the cycle counters is never bigger than
- * the latency of information-passing (cachelines) between
- * two CPUs.
- */
- for (i = 0; i < NR_LOOPS; i++) {
- /*
- * all APs synchronize but they loop on '== num_cpus'
- */
- while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb();
- atomic_set(&tsc_count_stop, 0);
- wmb();
- /*
- * this lets the APs save their current TSC:
- */
- atomic_inc(&tsc_count_start);
- rdtscll(tsc_values[smp_processor_id()]);
- /*
- * We clear the TSC in the last loop:
- */
- if (i == NR_LOOPS-1)
- write_tsc(0, 0);
- /*
- * Wait for all APs to leave the synchronization point:
- */
- while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb();
- atomic_set(&tsc_count_start, 0);
- wmb();
- atomic_inc(&tsc_count_stop);
- }
- sum = 0;
- for (i = 0; i < smp_num_cpus; i++) {
- t0 = tsc_values[i];
- sum += t0;
- }
- avg = div64(sum, smp_num_cpus);
- sum = 0;
- for (i = 0; i < smp_num_cpus; i++) {
- delta = tsc_values[i] - avg;
- if (delta < 0)
- delta = -delta;
- /*
- * We report bigger than 2 microseconds clock differences.
- */
- if (delta > 2*one_usec) {
- long realdelta;
- if (!buggy) {
- buggy = 1;
- printk("n");
- }
- realdelta = div64(delta, one_usec);
- if (tsc_values[i] < avg)
- realdelta = -realdelta;
- printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.n",
- i, realdelta);
- }
- sum += delta;
- }
- if (!buggy)
- printk("passed.n");
- }
- static void __init synchronize_tsc_ap (void)
- {
- int i;
- /*
- * smp_num_cpus is not necessarily known at the time
- * this gets called, so we first wait for the BP to
- * finish SMP initialization:
- */
- while (!atomic_read(&tsc_start_flag)) mb();
- for (i = 0; i < NR_LOOPS; i++) {
- atomic_inc(&tsc_count_start);
- while (atomic_read(&tsc_count_start) != smp_num_cpus) mb();
- rdtscll(tsc_values[smp_processor_id()]);
- if (i == NR_LOOPS-1)
- write_tsc(0, 0);
- atomic_inc(&tsc_count_stop);
- while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb();
- }
- }
- #undef NR_LOOPS
- extern void calibrate_delay(void);
- static atomic_t init_deasserted;
- void __init smp_callin(void)
- {
- int cpuid, phys_id;
- unsigned long timeout;
- /*
- * If waken up by an INIT in an 82489DX configuration
- * we may get here before an INIT-deassert IPI reaches
- * our local APIC. We have to wait for the IPI or we'll
- * lock up on an APIC access.
- */
- if (!clustered_apic_mode)
- while (!atomic_read(&init_deasserted));
- /*
- * (This works even if the APIC is not enabled.)
- */
- phys_id = GET_APIC_ID(apic_read(APIC_ID));
- cpuid = current->processor;
- if (test_and_set_bit(cpuid, &cpu_online_map)) {
- printk("huh, phys CPU#%d, CPU#%d already present??n",
- phys_id, cpuid);
- BUG();
- }
- Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUTn", cpuid, phys_id);
- /*
- * STARTUP IPIs are fragile beasts as they might sometimes
- * trigger some glue motherboard logic. Complete APIC bus
- * silence for 1 second, this overestimates the time the
- * boot CPU is spending to send the up to 2 STARTUP IPIs
- * by a factor of two. This should be enough.
- */
- /*
- * Waiting 2s total for startup (udelay is not yet working)
- */
- timeout = jiffies + 2*HZ;
- while (time_before(jiffies, timeout)) {
- /*
- * Has the boot CPU finished it's STARTUP sequence?
- */
- if (test_bit(cpuid, &cpu_callout_map))
- break;
- rep_nop();
- }
- if (!time_before(jiffies, timeout)) {
- printk("BUG: CPU%d started up but did not get a callout!n",
- cpuid);
- BUG();
- }
- /*
- * the boot CPU has finished the init stage and is spinning
- * on callin_map until we finish. We are free to set up this
- * CPU, first the APIC. (this is probably redundant on most
- * boards)
- */
- Dprintk("CALLIN, before setup_local_APIC().n");
- /*
- * Because we use NMIs rather than the INIT-STARTUP sequence to
- * bootstrap the CPUs, the APIC may be in a wierd state. Kick it.
- */
- if (clustered_apic_mode)
- clear_local_APIC();
- setup_local_APIC();
- __sti();
- #ifdef CONFIG_MTRR
- /*
- * Must be done before calibration delay is computed
- */
- mtrr_init_secondary_cpu ();
- #endif
- /*
- * Get our bogomips.
- */
- calibrate_delay();
- Dprintk("Stack at about %pn",&cpuid);
- /*
- * Save our processor parameters
- */
- smp_store_cpu_info(cpuid);
- /*
- * Allow the master to continue.
- */
- set_bit(cpuid, &cpu_callin_map);
- /*
- * Synchronize the TSC with the BP
- */
- if (cpu_has_tsc)
- synchronize_tsc_ap();
- }
- int cpucount;
- extern int cpu_idle(void);
- /*
- * Activate a secondary processor.
- */
- int __init start_secondary(void *unused)
- {
- /*
- * Dont put anything before smp_callin(), SMP
- * booting is too fragile that we want to limit the
- * things done here to the most necessary things.
- */
- cpu_init();
- smp_callin();
- while (!atomic_read(&smp_commenced))
- rep_nop();
- /*
- * low-memory mappings have been cleared, flush them from
- * the local TLBs too.
- */
- local_flush_tlb();
- return cpu_idle();
- }
- /*
- * Everything has been set up for the secondary
- * CPUs - they just need to reload everything
- * from the task structure
- * This function must not return.
- */
- void __init initialize_secondary(void)
- {
- /*
- * We don't actually need to load the full TSS,
- * basically just the stack pointer and the eip.
- */
- asm volatile(
- "movl %0,%%espnt"
- "jmp *%1"
- :
- :"r" (current->thread.esp),"r" (current->thread.eip));
- }
- extern struct {
- void * esp;
- unsigned short ss;
- } stack_start;
- static int __init fork_by_hand(void)
- {
- struct pt_regs regs;
- /*
- * don't care about the eip and regs settings since
- * we'll never reschedule the forked task.
- */
- return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0);
- }
- /* which physical APIC ID maps to which logical CPU number */
- volatile int physical_apicid_2_cpu[MAX_APICID];
- /* which logical CPU number maps to which physical APIC ID */
- volatile int cpu_2_physical_apicid[NR_CPUS];
- /* which logical APIC ID maps to which logical CPU number */
- volatile int logical_apicid_2_cpu[MAX_APICID];
- /* which logical CPU number maps to which logical APIC ID */
- volatile int cpu_2_logical_apicid[NR_CPUS];
- static inline void init_cpu_to_apicid(void)
- /* Initialize all maps between cpu number and apicids */
- {
- int apicid, cpu;
- for (apicid = 0; apicid < MAX_APICID; apicid++) {
- physical_apicid_2_cpu[apicid] = -1;
- logical_apicid_2_cpu[apicid] = -1;
- }
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
- cpu_2_physical_apicid[cpu] = -1;
- cpu_2_logical_apicid[cpu] = -1;
- }
- }
- static inline void map_cpu_to_boot_apicid(int cpu, int apicid)
- /*
- * set up a mapping between cpu and apicid. Uses logical apicids for multiquad,
- * else physical apic ids
- */
- {
- if (clustered_apic_mode) {
- logical_apicid_2_cpu[apicid] = cpu;
- cpu_2_logical_apicid[cpu] = apicid;
- } else {
- physical_apicid_2_cpu[apicid] = cpu;
- cpu_2_physical_apicid[cpu] = apicid;
- }
- }
- static inline void unmap_cpu_to_boot_apicid(int cpu, int apicid)
- /*
- * undo a mapping between cpu and apicid. Uses logical apicids for multiquad,
- * else physical apic ids
- */
- {
- if (clustered_apic_mode) {
- logical_apicid_2_cpu[apicid] = -1;
- cpu_2_logical_apicid[cpu] = -1;
- } else {
- physical_apicid_2_cpu[apicid] = -1;
- cpu_2_physical_apicid[cpu] = -1;
- }
- }
- #if APIC_DEBUG
- static inline void inquire_remote_apic(int apicid)
- {
- int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
- char *names[] = { "ID", "VERSION", "SPIV" };
- int timeout, status;
- printk("Inquiring remote APIC #%d...n", apicid);
- for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
- printk("... APIC #%d %s: ", apicid, names[i]);
- /*
- * Wait for idle.
- */
- apic_wait_icr_idle();
- apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
- apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
- timeout = 0;
- do {
- udelay(100);
- status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
- } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
- switch (status) {
- case APIC_ICR_RR_VALID:
- status = apic_read(APIC_RRR);
- printk("%08xn", status);
- break;
- default:
- printk("failedn");
- }
- }
- }
- #endif
- static int wakeup_secondary_via_NMI(int logical_apicid)
- /*
- * Poke the other CPU in the eye to wake it up. Remember that the normal
- * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
- * won't ... remember to clear down the APIC, etc later.
- */
- {
- unsigned long send_status = 0, accept_status = 0;
- int timeout, maxlvt;
- /* Target chip */
- apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
- /* Boot on the stack */
- /* Kick the second */
- apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
- Dprintk("Waiting for send to finish...n");
- timeout = 0;
- do {
- Dprintk("+");
- udelay(100);
- send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
- } while (send_status && (timeout++ < 1000));
- /*
- * Give the other CPU some time to accept the IPI.
- */
- udelay(200);
- /*
- * Due to the Pentium erratum 3AP.
- */
- maxlvt = get_maxlvt();
- if (maxlvt > 3) {
- apic_read_around(APIC_SPIV);
- apic_write(APIC_ESR, 0);
- }
- accept_status = (apic_read(APIC_ESR) & 0xEF);
- Dprintk("NMI sent.n");
- if (send_status)
- printk("APIC never delivered???n");
- if (accept_status)
- printk("APIC delivery error (%lx).n", accept_status);
- return (send_status | accept_status);
- }
- static int wakeup_secondary_via_INIT(int phys_apicid, unsigned long start_eip)
- {
- unsigned long send_status = 0, accept_status = 0;
- int maxlvt, timeout, num_starts, j;
- Dprintk("Asserting INIT.n");
- /*
- * Turn INIT on target chip
- */
- apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
- /*
- * Send IPI
- */
- apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
- | APIC_DM_INIT);
- Dprintk("Waiting for send to finish...n");
- timeout = 0;
- do {
- Dprintk("+");
- udelay(100);
- send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
- } while (send_status && (timeout++ < 1000));
- mdelay(10);
- Dprintk("Deasserting INIT.n");
- /* Target chip */
- apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
- /* Send IPI */
- apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
- Dprintk("Waiting for send to finish...n");
- timeout = 0;
- do {
- Dprintk("+");
- udelay(100);
- send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
- } while (send_status && (timeout++ < 1000));
- atomic_set(&init_deasserted, 1);
- /*
- * Should we send STARTUP IPIs ?
- *
- * Determine this based on the APIC version.
- * If we don't have an integrated APIC, don't send the STARTUP IPIs.
- */
- if (APIC_INTEGRATED(apic_version[phys_apicid]))
- num_starts = 2;
- else
- num_starts = 0;
- /*
- * Run STARTUP IPI loop.
- */
- Dprintk("#startup loops: %d.n", num_starts);
- maxlvt = get_maxlvt();
- for (j = 1; j <= num_starts; j++) {
- Dprintk("Sending STARTUP #%d.n",j);
- apic_read_around(APIC_SPIV);
- apic_write(APIC_ESR, 0);
- apic_read(APIC_ESR);
- Dprintk("After apic_write.n");
- /*
- * STARTUP IPI
- */
- /* Target chip */
- apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
- /* Boot on the stack */
- /* Kick the second */
- apic_write_around(APIC_ICR, APIC_DM_STARTUP
- | (start_eip >> 12));
- /*
- * Give the other CPU some time to accept the IPI.
- */
- udelay(300);
- Dprintk("Startup point 1.n");
- Dprintk("Waiting for send to finish...n");
- timeout = 0;
- do {
- Dprintk("+");
- udelay(100);
- send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
- } while (send_status && (timeout++ < 1000));
- /*
- * Give the other CPU some time to accept the IPI.
- */
- udelay(200);
- /*
- * Due to the Pentium erratum 3AP.
- */
- if (maxlvt > 3) {
- apic_read_around(APIC_SPIV);
- apic_write(APIC_ESR, 0);
- }
- accept_status = (apic_read(APIC_ESR) & 0xEF);
- if (send_status || accept_status)
- break;
- }
- Dprintk("After Startup.n");
- if (send_status)
- printk("APIC never delivered???n");
- if (accept_status)
- printk("APIC delivery error (%lx).n", accept_status);
- return (send_status | accept_status);
- }
- extern unsigned long cpu_initialized;
- static void __init do_boot_cpu (int apicid)
- /*
- * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
- * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
- */
- {
- struct task_struct *idle;
- unsigned long boot_error = 0;
- int timeout, cpu;
- unsigned long start_eip;
- unsigned short nmi_high, nmi_low;
- cpu = ++cpucount;
- /*
- * We can't use kernel_thread since we must avoid to
- * reschedule the child.
- */
- if (fork_by_hand() < 0)
- panic("failed fork for CPU %d", cpu);
- /*
- * We remove it from the pidhash and the runqueue
- * once we got the process:
- */
- idle = init_task.prev_task;
- if (!idle)
- panic("No idle process for CPU %d", cpu);
- idle->processor = cpu;
- idle->cpus_runnable = 1 << cpu; /* we schedule the first task manually */
- map_cpu_to_boot_apicid(cpu, apicid);
- idle->thread.eip = (unsigned long) start_secondary;
- del_from_runqueue(idle);
- unhash_process(idle);
- init_tasks[cpu] = idle;
- /* start_eip had better be page-aligned! */
- start_eip = setup_trampoline();
- /* So we see what's up */
- printk("Booting processor %d/%d eip %lxn", cpu, apicid, start_eip);
- stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle);
- /*
- * This grunge runs the startup process for
- * the targeted processor.
- */
- atomic_set(&init_deasserted, 0);
- Dprintk("Setting warm reset code and vector.n");
- if (clustered_apic_mode == CLUSTERED_APIC_NUMAQ) {
- /* stash the current NMI vector, so we can put things back */
- nmi_high = *((volatile unsigned short *) TRAMPOLINE_HIGH);
- nmi_low = *((volatile unsigned short *) TRAMPOLINE_LOW);
- }
- CMOS_WRITE(0xa, 0xf);
- local_flush_tlb();
- Dprintk("1.n");
- *((volatile unsigned short *) TRAMPOLINE_HIGH) = start_eip >> 4;
- Dprintk("2.n");
- *((volatile unsigned short *) TRAMPOLINE_LOW) = start_eip & 0xf;
- Dprintk("3.n");
- /*
- * Be paranoid about clearing APIC errors.
- */
- if (!clustered_apic_mode && APIC_INTEGRATED(apic_version[apicid])) {
- apic_read_around(APIC_SPIV);
- apic_write(APIC_ESR, 0);
- apic_read(APIC_ESR);
- }
- /*
- * Status is now clean
- */
- boot_error = 0;
- /*
- * Starting actual IPI sequence...
- */
- if (clustered_apic_mode == CLUSTERED_APIC_NUMAQ)
- boot_error = wakeup_secondary_via_NMI(apicid);
- else
- boot_error = wakeup_secondary_via_INIT(apicid, start_eip);
- if (!boot_error) {
- /*
- * allow APs to start initializing.
- */
- Dprintk("Before Callout %d.n", cpu);
- set_bit(cpu, &cpu_callout_map);
- Dprintk("After Callout %d.n", cpu);
- /*
- * Wait 5s total for a response
- */
- for (timeout = 0; timeout < 50000; timeout++) {
- if (test_bit(cpu, &cpu_callin_map))
- break; /* It has booted */
- udelay(100);
- }
- if (test_bit(cpu, &cpu_callin_map)) {
- /* number CPUs logically, starting from 1 (BSP is 0) */
- Dprintk("OK.n");
- printk("CPU%d: ", cpu);
- print_cpu_info(&cpu_data[cpu]);
- Dprintk("CPU has booted.n");
- } else {
- boot_error= 1;
- if (*((volatile unsigned char *)phys_to_virt(8192))
- == 0xA5)
- /* trampoline started but...? */
- printk("Stuck ??n");
- else
- /* trampoline code not run */
- printk("Not responding.n");
- #if APIC_DEBUG
- if (!clustered_apic_mode)
- inquire_remote_apic(apicid);
- #endif
- }
- }
- if (boot_error) {
- /* Try to put things back the way they were before ... */
- unmap_cpu_to_boot_apicid(cpu, apicid);
- clear_bit(cpu, &cpu_callout_map); /* was set here (do_boot_cpu()) */
- clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
- clear_bit(cpu, &cpu_online_map); /* was set in smp_callin() */
- cpucount--;
- }
- /* mark "stuck" area as not stuck */
- *((volatile unsigned long *)phys_to_virt(8192)) = 0;
- if(clustered_apic_mode == CLUSTERED_APIC_NUMAQ) {
- printk("Restoring NMI vectorn");
- *((volatile unsigned short *) TRAMPOLINE_HIGH) = nmi_high;
- *((volatile unsigned short *) TRAMPOLINE_LOW) = nmi_low;
- }
- }
- cycles_t cacheflush_time;
- static void smp_tune_scheduling (void)
- {
- unsigned long cachesize; /* kB */
- unsigned long bandwidth = 350; /* MB/s */
- /*
- * Rough estimation for SMP scheduling, this is the number of
- * cycles it takes for a fully memory-limited process to flush
- * the SMP-local cache.
- *
- * (For a P5 this pretty much means we will choose another idle
- * CPU almost always at wakeup time (this is due to the small
- * L1 cache), on PIIs it's around 50-100 usecs, depending on
- * the cache size)
- */
- if (!cpu_khz) {
- /*
- * this basically disables processor-affinity
- * scheduling on SMP without a TSC.
- */
- cacheflush_time = 0;
- return;
- } else {
- cachesize = boot_cpu_data.x86_cache_size;
- if (cachesize == -1) {
- cachesize = 16; /* Pentiums, 2x8kB cache */
- bandwidth = 100;
- }
- cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth;
- }
- printk("per-CPU timeslice cutoff: %ld.%02ld usecs.n",
- (long)cacheflush_time/(cpu_khz/1000),
- ((long)cacheflush_time*100/(cpu_khz/1000)) % 100);
- }
- /*
- * Cycle through the processors sending APIC IPIs to boot each.
- */
- extern int prof_multiplier[NR_CPUS];
- extern int prof_old_multiplier[NR_CPUS];
- extern int prof_counter[NR_CPUS];
- static int boot_cpu_logical_apicid;
- /* Where the IO area was mapped on multiquad, always 0 otherwise */
- void *xquad_portio;
- int cpu_sibling_map[NR_CPUS] __cacheline_aligned;
- void __init smp_boot_cpus(void)
- {
- int apicid, cpu, bit;
- if ((clustered_apic_mode == CLUSTERED_APIC_NUMAQ) && (numnodes > 1)) {
- printk("Remapping cross-quad port I/O for %d quadsn",
- numnodes);
- printk("xquad_portio vaddr 0x%08lx, len %08lxn",
- (u_long) xquad_portio,
- (u_long) numnodes * XQUAD_PORTIO_LEN);
- xquad_portio = ioremap (XQUAD_PORTIO_BASE,
- numnodes * XQUAD_PORTIO_LEN);
- }
- #ifdef CONFIG_MTRR
- /* Must be done before other processors booted */
- mtrr_init_boot_cpu ();
- #endif
- /*
- * Initialize the logical to physical CPU number mapping
- * and the per-CPU profiling counter/multiplier
- */
- for (cpu = 0; cpu < NR_CPUS; cpu++) {
- prof_counter[cpu] = 1;
- prof_old_multiplier[cpu] = 1;
- prof_multiplier[cpu] = 1;
- }
- init_cpu_to_apicid();
- /*
- * Setup boot CPU information
- */
- smp_store_cpu_info(0); /* Final full version of the data */
- printk("CPU%d: ", 0);
- print_cpu_info(&cpu_data[0]);
- /*
- * We have the boot CPU online for sure.
- */
- set_bit(0, &cpu_online_map);
- boot_cpu_logical_apicid = logical_smp_processor_id();
- map_cpu_to_boot_apicid(0, boot_cpu_apicid);
- global_irq_holder = 0;
- current->processor = 0;
- init_idle();
- smp_tune_scheduling();
- /*
- * If we couldnt find an SMP configuration at boot time,
- * get out of here now!
- */
- if (!smp_found_config) {
- printk(KERN_NOTICE "SMP motherboard not detected.n");
- #ifndef CONFIG_VISWS
- io_apic_irqs = 0;
- #endif
- cpu_online_map = phys_cpu_present_map = 1;
- smp_num_cpus = 1;
- if (APIC_init_uniprocessor())
- printk(KERN_NOTICE "Local APIC not detected."
- " Using dummy APIC emulation.n");
- goto smp_done;
- }
- /*
- * Should not be necessary because the MP table should list the boot
- * CPU too, but we do it for the sake of robustness anyway.
- * Makes no sense to do this check in clustered apic mode, so skip it
- */
- if (!clustered_apic_mode &&
- !test_bit(boot_cpu_physical_apicid, &phys_cpu_present_map)) {
- printk("weird, boot CPU (#%d) not listed by the BIOS.n",
- boot_cpu_physical_apicid);
- phys_cpu_present_map |= (1 << hard_smp_processor_id());
- }
- /*
- * If we couldn't find a local APIC, then get out of here now!
- */
- if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
- !test_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability)) {
- printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...n",
- boot_cpu_physical_apicid);
- printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)n");
- #ifndef CONFIG_VISWS
- io_apic_irqs = 0;
- #endif
- cpu_online_map = phys_cpu_present_map = 1;
- smp_num_cpus = 1;
- goto smp_done;
- }
- verify_local_APIC();
- /*
- * If SMP should be disabled, then really disable it!
- */
- if (!max_cpus) {
- smp_found_config = 0;
- printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.n");
- #ifndef CONFIG_VISWS
- io_apic_irqs = 0;
- #endif
- cpu_online_map = phys_cpu_present_map = 1;
- smp_num_cpus = 1;
- goto smp_done;
- }
- connect_bsp_APIC();
- setup_local_APIC();
- if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_physical_apicid)
- BUG();
- /*
- * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
- *
- * In clustered apic mode, phys_cpu_present_map is a constructed thus:
- * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
- * clustered apic ID.
- */
- Dprintk("CPU present map: %lxn", phys_cpu_present_map);
- for (bit = 0; bit < NR_CPUS; bit++) {
- apicid = cpu_present_to_apicid(bit);
- /*
- * Don't even attempt to start the boot CPU!
- */
- if (apicid == boot_cpu_apicid)
- continue;
- if (!(phys_cpu_present_map & (1 << bit)))
- continue;
- if ((max_cpus >= 0) && (max_cpus <= cpucount+1))
- continue;
- do_boot_cpu(apicid);
- /*
- * Make sure we unmap all failed CPUs
- */
- if ((boot_apicid_to_cpu(apicid) == -1) &&
- (phys_cpu_present_map & (1 << bit)))
- printk("CPU #%d not responding - cannot use it.n",
- apicid);
- }
- /*
- * Cleanup possible dangling ends...
- */
- #ifndef CONFIG_VISWS
- {
- /*
- * Install writable page 0 entry to set BIOS data area.
- */
- local_flush_tlb();
- /*
- * Paranoid: Set warm reset code and vector here back
- * to default values.
- */
- CMOS_WRITE(0, 0xf);
- *((volatile long *) phys_to_virt(0x467)) = 0;
- }
- #endif
- /*
- * Allow the user to impress friends.
- */
- Dprintk("Before bogomips.n");
- if (!cpucount) {
- printk(KERN_ERR "Error: only one processor found.n");
- } else {
- unsigned long bogosum = 0;
- for (cpu = 0; cpu < NR_CPUS; cpu++)
- if (cpu_online_map & (1<<cpu))
- bogosum += cpu_data[cpu].loops_per_jiffy;
- printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).n",
- cpucount+1,
- bogosum/(500000/HZ),
- (bogosum/(5000/HZ))%100);
- Dprintk("Before bogocount - setting activated=1.n");
- }
- smp_num_cpus = cpucount + 1;
- if (smp_b_stepping)
- printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.n");
- Dprintk("Boot done.n");
- /*
- * If Hyper-Threading is avaialble, construct cpu_sibling_map[], so
- * that we can tell the sibling CPU efficiently.
- */
- if (test_bit(X86_FEATURE_HT, boot_cpu_data.x86_capability)
- && smp_num_siblings > 1) {
- for (cpu = 0; cpu < NR_CPUS; cpu++)
- cpu_sibling_map[cpu] = NO_PROC_ID;
-
- for (cpu = 0; cpu < smp_num_cpus; cpu++) {
- int i;
-
- for (i = 0; i < smp_num_cpus; i++) {
- if (i == cpu)
- continue;
- if (phys_proc_id[cpu] == phys_proc_id[i]) {
- cpu_sibling_map[cpu] = i;
- printk("cpu_sibling_map[%d] = %dn", cpu, cpu_sibling_map[cpu]);
- break;
- }
- }
- if (cpu_sibling_map[cpu] == NO_PROC_ID) {
- smp_num_siblings = 1;
- printk(KERN_WARNING "WARNING: No sibling found for CPU %d.n", cpu);
- }
- }
- }
-
- #ifndef CONFIG_VISWS
- /*
- * Here we can be sure that there is an IO-APIC in the system. Let's
- * go and set it up:
- */
- if (!skip_ioapic_setup && nr_ioapics)
- setup_IO_APIC();
- #endif
- /*
- * Set up all local APIC timers in the system:
- */
- setup_APIC_clocks();
- /*
- * Synchronize the TSC with the AP
- */
- if (cpu_has_tsc && cpucount)
- synchronize_tsc_bp();
- smp_done:
- zap_low_mappings();
- }