process.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:22k
- /*
- * linux/arch/i386/kernel/process.c
- *
- * Copyright (C) 1995 Linus Torvalds
- *
- * Pentium III FXSR, SSE support
- * Gareth Hughes <gareth@valinux.com>, May 2000
- */
- /*
- * This file handles the architecture-dependent parts of process handling..
- */
- #define __KERNEL_SYSCALLS__
- #include <stdarg.h>
- #include <linux/errno.h>
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/smp.h>
- #include <linux/smp_lock.h>
- #include <linux/stddef.h>
- #include <linux/unistd.h>
- #include <linux/ptrace.h>
- #include <linux/slab.h>
- #include <linux/vmalloc.h>
- #include <linux/user.h>
- #include <linux/a.out.h>
- #include <linux/interrupt.h>
- #include <linux/config.h>
- #include <linux/delay.h>
- #include <linux/reboot.h>
- #include <linux/init.h>
- #include <linux/mc146818rtc.h>
- #include <asm/uaccess.h>
- #include <asm/pgtable.h>
- #include <asm/system.h>
- #include <asm/io.h>
- #include <asm/ldt.h>
- #include <asm/processor.h>
- #include <asm/i387.h>
- #include <asm/irq.h>
- #include <asm/desc.h>
- #include <asm/mmu_context.h>
- #ifdef CONFIG_MATH_EMULATION
- #include <asm/math_emu.h>
- #endif
- #include <linux/irq.h>
- asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
- int hlt_counter;
- /*
- * Powermanagement idle function, if any..
- */
- void (*pm_idle)(void);
- /*
- * Power off function, if any
- */
- void (*pm_power_off)(void);
- void disable_hlt(void)
- {
- hlt_counter++;
- }
- void enable_hlt(void)
- {
- hlt_counter--;
- }
- /*
- * We use this if we don't have any better
- * idle routine..
- */
- void default_idle(void)
- {
- if (current_cpu_data.hlt_works_ok && !hlt_counter) {
- __cli();
- if (!current->need_resched)
- safe_halt();
- else
- __sti();
- }
- }
- /*
- * On SMP it's slightly faster (but much more power-consuming!)
- * to poll the ->need_resched flag instead of waiting for the
- * cross-CPU IPI to arrive. Use this option with caution.
- */
- static void poll_idle (void)
- {
- int oldval;
- __sti();
- /*
- * Deal with another CPU just having chosen a thread to
- * run here:
- */
- oldval = xchg(¤t->need_resched, -1);
- if (!oldval)
- asm volatile(
- "2:"
- "cmpl $-1, %0;"
- "rep; nop;"
- "je 2b;"
- : :"m" (current->need_resched));
- }
- /*
- * The idle thread. There's no useful work to be
- * done, so just try to conserve power and have a
- * low exit latency (ie sit in a loop waiting for
- * somebody to say that they'd like to reschedule)
- */
- void cpu_idle (void)
- {
- /* endless idle loop with no priority at all */
- init_idle();
- current->nice = 20;
- current->counter = -100;
- while (1) {
- void (*idle)(void) = pm_idle;
- if (!idle)
- idle = default_idle;
- while (!current->need_resched)
- idle();
- schedule();
- check_pgt_cache();
- }
- }
- static int __init idle_setup (char *str)
- {
- if (!strncmp(str, "poll", 4)) {
- printk("using polling idle threads.n");
- pm_idle = poll_idle;
- }
- return 1;
- }
- __setup("idle=", idle_setup);
- static long no_idt[2];
- static int reboot_mode;
- int reboot_thru_bios;
- #ifdef CONFIG_SMP
- int reboot_smp = 0;
- static int reboot_cpu = -1;
- /* shamelessly grabbed from lib/vsprintf.c for readability */
- #define is_digit(c) ((c) >= '0' && (c) <= '9')
- #endif
- static int __init reboot_setup(char *str)
- {
- while(1) {
- switch (*str) {
- case 'w': /* "warm" reboot (no memory testing etc) */
- reboot_mode = 0x1234;
- break;
- case 'c': /* "cold" reboot (with memory testing etc) */
- reboot_mode = 0x0;
- break;
- case 'b': /* "bios" reboot by jumping through the BIOS */
- reboot_thru_bios = 1;
- break;
- case 'h': /* "hard" reboot by toggling RESET and/or crashing the CPU */
- reboot_thru_bios = 0;
- break;
- #ifdef CONFIG_SMP
- case 's': /* "smp" reboot by executing reset on BSP or other CPU*/
- reboot_smp = 1;
- if (is_digit(*(str+1))) {
- reboot_cpu = (int) (*(str+1) - '0');
- if (is_digit(*(str+2)))
- reboot_cpu = reboot_cpu*10 + (int)(*(str+2) - '0');
- }
- /* we will leave sorting out the final value
- when we are ready to reboot, since we might not
- have set up boot_cpu_id or smp_num_cpu */
- break;
- #endif
- }
- if((str = strchr(str,',')) != NULL)
- str++;
- else
- break;
- }
- return 1;
- }
- __setup("reboot=", reboot_setup);
- /* The following code and data reboots the machine by switching to real
- mode and jumping to the BIOS reset entry point, as if the CPU has
- really been reset. The previous version asked the keyboard
- controller to pulse the CPU reset line, which is more thorough, but
- doesn't work with at least one type of 486 motherboard. It is easy
- to stop this code working; hence the copious comments. */
- static unsigned long long
- real_mode_gdt_entries [3] =
- {
- 0x0000000000000000ULL, /* Null descriptor */
- 0x00009a000000ffffULL, /* 16-bit real-mode 64k code at 0x00000000 */
- 0x000092000100ffffULL /* 16-bit real-mode 64k data at 0x00000100 */
- };
- static struct
- {
- unsigned short size __attribute__ ((packed));
- unsigned long long * base __attribute__ ((packed));
- }
- real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, real_mode_gdt_entries },
- real_mode_idt = { 0x3ff, 0 };
- /* This is 16-bit protected mode code to disable paging and the cache,
- switch to real mode and jump to the BIOS reset code.
- The instruction that switches to real mode by writing to CR0 must be
- followed immediately by a far jump instruction, which set CS to a
- valid value for real mode, and flushes the prefetch queue to avoid
- running instructions that have already been decoded in protected
- mode.
- Clears all the flags except ET, especially PG (paging), PE
- (protected-mode enable) and TS (task switch for coprocessor state
- save). Flushes the TLB after paging has been disabled. Sets CD and
- NW, to disable the cache on a 486, and invalidates the cache. This
- is more like the state of a 486 after reset. I don't know if
- something else should be done for other chips.
- More could be done here to set up the registers as if a CPU reset had
- occurred; hopefully real BIOSs don't assume much. */
- static unsigned char real_mode_switch [] =
- {
- 0x66, 0x0f, 0x20, 0xc0, /* movl %cr0,%eax */
- 0x66, 0x83, 0xe0, 0x11, /* andl $0x00000011,%eax */
- 0x66, 0x0d, 0x00, 0x00, 0x00, 0x60, /* orl $0x60000000,%eax */
- 0x66, 0x0f, 0x22, 0xc0, /* movl %eax,%cr0 */
- 0x66, 0x0f, 0x22, 0xd8, /* movl %eax,%cr3 */
- 0x66, 0x0f, 0x20, 0xc3, /* movl %cr0,%ebx */
- 0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60, /* andl $0x60000000,%ebx */
- 0x74, 0x02, /* jz f */
- 0x0f, 0x08, /* invd */
- 0x24, 0x10, /* f: andb $0x10,al */
- 0x66, 0x0f, 0x22, 0xc0 /* movl %eax,%cr0 */
- };
- static unsigned char jump_to_bios [] =
- {
- 0xea, 0x00, 0x00, 0xff, 0xff /* ljmp $0xffff,$0x0000 */
- };
- static inline void kb_wait(void)
- {
- int i;
- for (i=0; i<0x10000; i++)
- if ((inb_p(0x64) & 0x02) == 0)
- break;
- }
- /*
- * Switch to real mode and then execute the code
- * specified by the code and length parameters.
- * We assume that length will aways be less that 100!
- */
- void machine_real_restart(unsigned char *code, int length)
- {
- unsigned long flags;
- cli();
- /* Write zero to CMOS register number 0x0f, which the BIOS POST
- routine will recognize as telling it to do a proper reboot. (Well
- that's what this book in front of me says -- it may only apply to
- the Phoenix BIOS though, it's not clear). At the same time,
- disable NMIs by setting the top bit in the CMOS address register,
- as we're about to do peculiar things to the CPU. I'm not sure if
- `outb_p' is needed instead of just `outb'. Use it to be on the
- safe side. (Yes, CMOS_WRITE does outb_p's. - Paul G.)
- */
- spin_lock_irqsave(&rtc_lock, flags);
- CMOS_WRITE(0x00, 0x8f);
- spin_unlock_irqrestore(&rtc_lock, flags);
- /* Remap the kernel at virtual address zero, as well as offset zero
- from the kernel segment. This assumes the kernel segment starts at
- virtual address PAGE_OFFSET. */
- memcpy (swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
- sizeof (swapper_pg_dir [0]) * KERNEL_PGD_PTRS);
- /* Make sure the first page is mapped to the start of physical memory.
- It is normally not mapped, to trap kernel NULL pointer dereferences. */
- pg0[0] = _PAGE_RW | _PAGE_PRESENT;
- /*
- * Use `swapper_pg_dir' as our page directory.
- */
- load_cr3(swapper_pg_dir);
- /* Write 0x1234 to absolute memory location 0x472. The BIOS reads
- this on booting to tell it to "Bypass memory test (also warm
- boot)". This seems like a fairly standard thing that gets set by
- REBOOT.COM programs, and the previous reset routine did this
- too. */
- *((unsigned short *)0x472) = reboot_mode;
- /* For the switch to real mode, copy some code to low memory. It has
- to be in the first 64k because it is running in 16-bit mode, and it
- has to have the same physical and virtual address, because it turns
- off paging. Copy it near the end of the first page, out of the way
- of BIOS variables. */
- memcpy ((void *) (0x1000 - sizeof (real_mode_switch) - 100),
- real_mode_switch, sizeof (real_mode_switch));
- memcpy ((void *) (0x1000 - 100), code, length);
- /* Set up the IDT for real mode. */
- __asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));
- /* Set up a GDT from which we can load segment descriptors for real
- mode. The GDT is not used in real mode; it is just needed here to
- prepare the descriptors. */
- __asm__ __volatile__ ("lgdt %0" : : "m" (real_mode_gdt));
- /* Load the data segment registers, and thus the descriptors ready for
- real mode. The base address of each segment is 0x100, 16 times the
- selector value being loaded here. This is so that the segment
- registers don't have to be reloaded after switching to real mode:
- the values are consistent for real mode operation already. */
- __asm__ __volatile__ ("movl $0x0010,%%eaxn"
- "tmovl %%eax,%%dsn"
- "tmovl %%eax,%%esn"
- "tmovl %%eax,%%fsn"
- "tmovl %%eax,%%gsn"
- "tmovl %%eax,%%ss" : : : "eax");
- /* Jump to the 16-bit code that we copied earlier. It disables paging
- and the cache, switches to real mode, and jumps to the BIOS reset
- entry point. */
- __asm__ __volatile__ ("ljmp $0x0008,%0"
- :
- : "i" ((void *) (0x1000 - sizeof (real_mode_switch) - 100)));
- }
- void machine_restart(char * __unused)
- {
- #if CONFIG_SMP
- int cpuid;
-
- cpuid = GET_APIC_ID(apic_read(APIC_ID));
- if (reboot_smp) {
- /* check to see if reboot_cpu is valid
- if its not, default to the BSP */
- if ((reboot_cpu == -1) ||
- (reboot_cpu > (NR_CPUS -1)) ||
- !(phys_cpu_present_map & (1<<cpuid)))
- reboot_cpu = boot_cpu_physical_apicid;
- reboot_smp = 0; /* use this as a flag to only go through this once*/
- /* re-run this function on the other CPUs
- it will fall though this section since we have
- cleared reboot_smp, and do the reboot if it is the
- correct CPU, otherwise it halts. */
- if (reboot_cpu != cpuid)
- smp_call_function((void *)machine_restart , NULL, 1, 0);
- }
- /* if reboot_cpu is still -1, then we want a tradional reboot,
- and if we are not running on the reboot_cpu,, halt */
- if ((reboot_cpu != -1) && (cpuid != reboot_cpu)) {
- for (;;)
- __asm__ __volatile__ ("hlt");
- }
- /*
- * Stop all CPUs and turn off local APICs and the IO-APIC, so
- * other OSs see a clean IRQ state.
- */
- smp_send_stop();
- disable_IO_APIC();
- #endif
- if(!reboot_thru_bios) {
- /* rebooting needs to touch the page at absolute addr 0 */
- *((unsigned short *)__va(0x472)) = reboot_mode;
- for (;;) {
- int i;
- for (i=0; i<100; i++) {
- kb_wait();
- udelay(50);
- outb(0xfe,0x64); /* pulse reset low */
- udelay(50);
- }
- /* That didn't work - force a triple fault.. */
- __asm__ __volatile__("lidt %0": :"m" (no_idt));
- __asm__ __volatile__("int3");
- }
- }
- machine_real_restart(jump_to_bios, sizeof(jump_to_bios));
- }
- void machine_halt(void)
- {
- }
- void machine_power_off(void)
- {
- if (pm_power_off)
- pm_power_off();
- }
- extern void show_trace(unsigned long* esp);
- void show_regs(struct pt_regs * regs)
- {
- unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
- printk("n");
- printk("Pid: %d, comm: %20sn", current->pid, current->comm);
- printk("EIP: %04x:[<%08lx>] CPU: %d",0xffff & regs->xcs,regs->eip, smp_processor_id());
- if (regs->xcs & 3)
- printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
- printk(" EFLAGS: %08lx %sn",regs->eflags, print_tainted());
- printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lxn",
- regs->eax,regs->ebx,regs->ecx,regs->edx);
- printk("ESI: %08lx EDI: %08lx EBP: %08lx",
- regs->esi, regs->edi, regs->ebp);
- printk(" DS: %04x ES: %04xn",
- 0xffff & regs->xds,0xffff & regs->xes);
- __asm__("movl %%cr0, %0": "=r" (cr0));
- __asm__("movl %%cr2, %0": "=r" (cr2));
- __asm__("movl %%cr3, %0": "=r" (cr3));
- /* This could fault if %cr4 does not exist */
- __asm__("1: movl %%cr4, %0 n"
- "2: n"
- ".section __ex_table,"a" n"
- ".long 1b,2b n"
- ".previous n"
- : "=r" (cr4): "0" (0));
- printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lxn", cr0, cr2, cr3, cr4);
- show_trace(®s->esp);
- }
- /*
- * No need to lock the MM as we are the last user
- */
- void release_segments(struct mm_struct *mm)
- {
- void * ldt = mm->context.segments;
- /*
- * free the LDT
- */
- if (ldt) {
- mm->context.segments = NULL;
- clear_LDT();
- vfree(ldt);
- }
- }
- /*
- * Create a kernel thread
- */
- int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
- {
- long retval, d0;
- __asm__ __volatile__(
- "movl %%esp,%%esint"
- "int $0x80nt" /* Linux/i386 system call */
- "cmpl %%esp,%%esint" /* child or parent? */
- "je 1fnt" /* parent - jump */
- /* Load the argument into eax, and push it. That way, it does
- * not matter whether the called function is compiled with
- * -mregparm or not. */
- "movl %4,%%eaxnt"
- "pushl %%eaxnt"
- "call *%5nt" /* call fn */
- "movl %3,%0nt" /* exit */
- "int $0x80n"
- "1:t"
- :"=&a" (retval), "=&S" (d0)
- :"0" (__NR_clone), "i" (__NR_exit),
- "r" (arg), "r" (fn),
- "b" (flags | CLONE_VM)
- : "memory");
- return retval;
- }
- /*
- * Free current thread data structures etc..
- */
- void exit_thread(void)
- {
- /* nothing to do ... */
- }
- void flush_thread(void)
- {
- struct task_struct *tsk = current;
- memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
- /*
- * Forget coprocessor state..
- */
- clear_fpu(tsk);
- tsk->used_math = 0;
- }
- void release_thread(struct task_struct *dead_task)
- {
- if (dead_task->mm) {
- void * ldt = dead_task->mm->context.segments;
- // temporary debugging check
- if (ldt) {
- printk("WARNING: dead process %8s still has LDT? <%p>n",
- dead_task->comm, ldt);
- BUG();
- }
- }
- release_x86_irqs(dead_task);
- }
- /*
- * we do not have to muck with descriptors here, that is
- * done in switch_mm() as needed.
- */
- void copy_segments(struct task_struct *p, struct mm_struct *new_mm)
- {
- struct mm_struct * old_mm;
- void *old_ldt, *ldt;
- ldt = NULL;
- old_mm = current->mm;
- if (old_mm && (old_ldt = old_mm->context.segments) != NULL) {
- /*
- * Completely new LDT, we initialize it from the parent:
- */
- ldt = vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);
- if (!ldt)
- printk(KERN_WARNING "ldt allocation failedn");
- else
- memcpy(ldt, old_ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);
- }
- new_mm->context.segments = ldt;
- new_mm->context.cpuvalid = ~0UL; /* valid on all CPU's - they can't have stale data */
- }
- /*
- * Save a segment.
- */
- #define savesegment(seg,value)
- asm volatile("movl %%" #seg ",%0":"=m" (*(int *)&(value)))
- int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
- unsigned long unused,
- struct task_struct * p, struct pt_regs * regs)
- {
- struct pt_regs * childregs;
- childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1;
- struct_cpy(childregs, regs);
- childregs->eax = 0;
- childregs->esp = esp;
- p->thread.esp = (unsigned long) childregs;
- p->thread.esp0 = (unsigned long) (childregs+1);
- p->thread.eip = (unsigned long) ret_from_fork;
- savesegment(fs,p->thread.fs);
- savesegment(gs,p->thread.gs);
- unlazy_fpu(current);
- struct_cpy(&p->thread.i387, ¤t->thread.i387);
- return 0;
- }
- /*
- * fill in the user structure for a core dump..
- */
- void dump_thread(struct pt_regs * regs, struct user * dump)
- {
- int i;
- /* changed the size calculations - should hopefully work better. lbt */
- dump->magic = CMAGIC;
- dump->start_code = 0;
- dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
- dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
- dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
- dump->u_dsize -= dump->u_tsize;
- dump->u_ssize = 0;
- for (i = 0; i < 8; i++)
- dump->u_debugreg[i] = current->thread.debugreg[i];
- if (dump->start_stack < TASK_SIZE)
- dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
- dump->regs.ebx = regs->ebx;
- dump->regs.ecx = regs->ecx;
- dump->regs.edx = regs->edx;
- dump->regs.esi = regs->esi;
- dump->regs.edi = regs->edi;
- dump->regs.ebp = regs->ebp;
- dump->regs.eax = regs->eax;
- dump->regs.ds = regs->xds;
- dump->regs.es = regs->xes;
- savesegment(fs,dump->regs.fs);
- savesegment(gs,dump->regs.gs);
- dump->regs.orig_eax = regs->orig_eax;
- dump->regs.eip = regs->eip;
- dump->regs.cs = regs->xcs;
- dump->regs.eflags = regs->eflags;
- dump->regs.esp = regs->esp;
- dump->regs.ss = regs->xss;
- dump->u_fpvalid = dump_fpu (regs, &dump->i387);
- }
- /*
- * This special macro can be used to load a debugging register
- */
- #define loaddebug(thread,register)
- __asm__("movl %0,%%db" #register
- : /* no output */
- :"r" (thread->debugreg[register]))
- /*
- * switch_to(x,yn) should switch tasks from x to y.
- *
- * We fsave/fwait so that an exception goes off at the right time
- * (as a call from the fsave or fwait in effect) rather than to
- * the wrong process. Lazy FP saving no longer makes any sense
- * with modern CPU's, and this simplifies a lot of things (SMP
- * and UP become the same).
- *
- * NOTE! We used to use the x86 hardware context switching. The
- * reason for not using it any more becomes apparent when you
- * try to recover gracefully from saved state that is no longer
- * valid (stale segment register values in particular). With the
- * hardware task-switch, there is no way to fix up bad state in
- * a reasonable manner.
- *
- * The fact that Intel documents the hardware task-switching to
- * be slow is a fairly red herring - this code is not noticeably
- * faster. However, there _is_ some room for improvement here,
- * so the performance issues may eventually be a valid point.
- * More important, however, is the fact that this allows us much
- * more flexibility.
- */
- void __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
- {
- struct thread_struct *prev = &prev_p->thread,
- *next = &next_p->thread;
- struct tss_struct *tss = init_tss + smp_processor_id();
- unlazy_fpu(prev_p);
- /*
- * Reload esp0, LDT and the page table pointer:
- */
- tss->esp0 = next->esp0;
- /*
- * Save away %fs and %gs. No need to save %es and %ds, as
- * those are always kernel segments while inside the kernel.
- */
- asm volatile("movl %%fs,%0":"=m" (*(int *)&prev->fs));
- asm volatile("movl %%gs,%0":"=m" (*(int *)&prev->gs));
- /*
- * Restore %fs and %gs.
- */
- loadsegment(fs, next->fs);
- loadsegment(gs, next->gs);
- /*
- * Now maybe reload the debug registers
- */
- if (next->debugreg[7]){
- loaddebug(next, 0);
- loaddebug(next, 1);
- loaddebug(next, 2);
- loaddebug(next, 3);
- /* no 4 and 5 */
- loaddebug(next, 6);
- loaddebug(next, 7);
- }
- if (prev->ioperm || next->ioperm) {
- if (next->ioperm) {
- /*
- * 4 cachelines copy ... not good, but not that
- * bad either. Anyone got something better?
- * This only affects processes which use ioperm().
- * [Putting the TSSs into 4k-tlb mapped regions
- * and playing VM tricks to switch the IO bitmap
- * is not really acceptable.]
- */
- memcpy(tss->io_bitmap, next->io_bitmap,
- IO_BITMAP_SIZE*sizeof(unsigned long));
- tss->bitmap = IO_BITMAP_OFFSET;
- } else
- /*
- * a bitmap offset pointing outside of the TSS limit
- * causes a nicely controllable SIGSEGV if a process
- * tries to use a port IO instruction. The first
- * sys_ioperm() call sets up the bitmap properly.
- */
- tss->bitmap = INVALID_IO_BITMAP_OFFSET;
- }
- }
- asmlinkage int sys_fork(struct pt_regs regs)
- {
- return do_fork(SIGCHLD, regs.esp, ®s, 0);
- }
- asmlinkage int sys_clone(struct pt_regs regs)
- {
- unsigned long clone_flags;
- unsigned long newsp;
- clone_flags = regs.ebx;
- newsp = regs.ecx;
- if (!newsp)
- newsp = regs.esp;
- return do_fork(clone_flags, newsp, ®s, 0);
- }
- /*
- * This is trivial, and on the face of it looks like it
- * could equally well be done in user mode.
- *
- * Not so, for quite unobvious reasons - register pressure.
- * In user mode vfork() cannot have a stack frame, and if
- * done by calling the "clone()" system call directly, you
- * do not have enough call-clobbered registers to hold all
- * the information you need.
- */
- asmlinkage int sys_vfork(struct pt_regs regs)
- {
- return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0);
- }
- /*
- * sys_execve() executes a new program.
- */
- asmlinkage int sys_execve(struct pt_regs regs)
- {
- int error;
- char * filename;
- filename = getname((char *) regs.ebx);
- error = PTR_ERR(filename);
- if (IS_ERR(filename))
- goto out;
- error = do_execve(filename, (char **) regs.ecx, (char **) regs.edx, ®s);
- if (error == 0)
- current->ptrace &= ~PT_DTRACE;
- putname(filename);
- out:
- return error;
- }
- /*
- * These bracket the sleeping functions..
- */
- extern void scheduling_functions_start_here(void);
- extern void scheduling_functions_end_here(void);
- #define first_sched ((unsigned long) scheduling_functions_start_here)
- #define last_sched ((unsigned long) scheduling_functions_end_here)
- unsigned long get_wchan(struct task_struct *p)
- {
- unsigned long ebp, esp, eip;
- unsigned long stack_page;
- int count = 0;
- if (!p || p == current || p->state == TASK_RUNNING)
- return 0;
- stack_page = (unsigned long)p;
- esp = p->thread.esp;
- if (!stack_page || esp < stack_page || esp > 8188+stack_page)
- return 0;
- /* include/asm-i386/system.h:switch_to() pushes ebp last. */
- ebp = *(unsigned long *) esp;
- do {
- if (ebp < stack_page || ebp > 8184+stack_page)
- return 0;
- eip = *(unsigned long *) (ebp+4);
- if (eip < first_sched || eip >= last_sched)
- return eip;
- ebp = *(unsigned long *) ebp;
- } while (count++ < 16);
- return 0;
- }
- #undef last_sched
- #undef first_sched