time.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:14k
- /*
- * Copyright 2001 MontaVista Software Inc.
- * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
- *
- * Common time service routines for MIPS machines. See
- * Documents/MIPS/README.txt.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
- #include <linux/config.h>
- #include <linux/types.h>
- #include <linux/kernel.h>
- #include <linux/init.h>
- #include <linux/sched.h>
- #include <linux/param.h>
- #include <linux/time.h>
- #include <linux/smp.h>
- #include <linux/kernel_stat.h>
- #include <linux/spinlock.h>
- #include <linux/interrupt.h>
- #include <asm/bootinfo.h>
- #include <asm/cpu.h>
- #include <asm/time.h>
- #include <asm/hardirq.h>
- #include <asm/div64.h>
- /* This is for machines which generate the exact clock. */
- #define USECS_PER_JIFFY (1000000/HZ)
- #define USECS_PER_JIFFY_FRAC ((u32)((1000000ULL << 32) / HZ))
- /*
- * forward reference
- */
- extern rwlock_t xtime_lock;
- extern volatile unsigned long wall_jiffies;
- /*
- * whether we emulate local_timer_interrupts for SMP machines.
- */
- int emulate_local_timer_interrupt;
- /*
- * By default we provide the null RTC ops
- */
- static unsigned long null_rtc_get_time(void)
- {
- return mktime(2000, 1, 1, 0, 0, 0);
- }
- static int null_rtc_set_time(unsigned long sec)
- {
- return 0;
- }
- unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
- int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
- /*
- * timeofday services, for syscalls.
- */
- void do_gettimeofday(struct timeval *tv)
- {
- unsigned long flags;
- read_lock_irqsave (&xtime_lock, flags);
- *tv = xtime;
- tv->tv_usec += do_gettimeoffset();
- /*
- * xtime is atomically updated in timer_bh. jiffies - wall_jiffies
- * is nonzero if the timer bottom half hasnt executed yet.
- */
- if (jiffies - wall_jiffies)
- tv->tv_usec += USECS_PER_JIFFY;
- read_unlock_irqrestore (&xtime_lock, flags);
- if (tv->tv_usec >= 1000000) {
- tv->tv_usec -= 1000000;
- tv->tv_sec++;
- }
- }
- void do_settimeofday(struct timeval *tv)
- {
- write_lock_irq (&xtime_lock);
- /* This is revolting. We need to set the xtime.tv_usec
- * correctly. However, the value in this location is
- * is value at the last tick.
- * Discover what correction gettimeofday
- * would have done, and then undo it!
- */
- tv->tv_usec -= do_gettimeoffset();
- if (tv->tv_usec < 0) {
- tv->tv_usec += 1000000;
- tv->tv_sec--;
- }
- xtime = *tv;
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
- write_unlock_irq (&xtime_lock);
- }
- /*
- * Gettimeoffset routines. These routines returns the time duration
- * since last timer interrupt in usecs.
- *
- * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
- * Otherwise use calibrate_gettimeoffset()
- *
- * If the CPU does not have counter register all, you can either supply
- * your own gettimeoffset() routine, or use null_gettimeoffset() routines,
- * which gives the same resolution as HZ.
- */
- /* This is for machines which generate the exact clock. */
- #define USECS_PER_JIFFY (1000000/HZ)
- /* usecs per counter cycle, shifted to left by 32 bits */
- static unsigned int sll32_usecs_per_cycle=0;
- /* how many counter cycles in a jiffy */
- static unsigned long cycles_per_jiffy=0;
- /* Cycle counter value at the previous timer interrupt.. */
- static unsigned int timerhi, timerlo;
- /* last time when xtime and rtc are sync'ed up */
- static long last_rtc_update;
- /* the function pointer to one of the gettimeoffset funcs*/
- unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
- unsigned long null_gettimeoffset(void)
- {
- return 0;
- }
- unsigned long fixed_rate_gettimeoffset(void)
- {
- u32 count;
- unsigned long res;
- /* Get last timer tick in absolute kernel time */
- count = read_32bit_cp0_register(CP0_COUNT);
- /* .. relative to previous jiffy (32 bits is enough) */
- count -= timerlo;
- __asm__("multut%1,%2nt"
- "mfhit%0"
- :"=r" (res)
- :"r" (count),
- "r" (sll32_usecs_per_cycle));
- /*
- * Due to possible jiffies inconsistencies, we need to check
- * the result so that we'll get a timer that is monotonic.
- */
- if (res >= USECS_PER_JIFFY)
- res = USECS_PER_JIFFY-1;
- return res;
- }
- /*
- * Cached "1/(clocks per usec)*2^32" value.
- * It has to be recalculated once each jiffy.
- */
- static unsigned long cached_quotient;
- /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
- static unsigned long last_jiffies = 0;
- /*
- * This is copied from dec/time.c:do_ioasic_gettimeoffset() by Mercij.
- */
- unsigned long calibrate_div32_gettimeoffset(void)
- {
- u32 count;
- unsigned long res, tmp;
- unsigned long quotient;
- tmp = jiffies;
- quotient = cached_quotient;
- if (last_jiffies != tmp) {
- last_jiffies = tmp;
- if (last_jiffies != 0) {
- unsigned long r0;
- do_div64_32(r0, timerhi, timerlo, tmp);
- do_div64_32(quotient, USECS_PER_JIFFY,
- USECS_PER_JIFFY_FRAC, r0);
- cached_quotient = quotient;
- }
- }
- /* Get last timer tick in absolute kernel time */
- count = read_32bit_cp0_register(CP0_COUNT);
- /* .. relative to previous jiffy (32 bits is enough) */
- count -= timerlo;
- __asm__("multu %2,%3"
- : "=l" (tmp), "=h" (res)
- : "r" (count), "r" (quotient));
- /*
- * Due to possible jiffies inconsistencies, we need to check
- * the result so that we'll get a timer that is monotonic.
- */
- if (res >= USECS_PER_JIFFY)
- res = USECS_PER_JIFFY - 1;
- return res;
- }
- unsigned long calibrate_div64_gettimeoffset(void)
- {
- u32 count;
- unsigned long res, tmp;
- unsigned long quotient;
- tmp = jiffies;
- quotient = cached_quotient;
- if (tmp && last_jiffies != tmp) {
- last_jiffies = tmp;
- __asm__(".settnoreordernt"
- ".settnoatnt"
- ".settmips3nt"
- "lwut%0,%2nt"
- "dsll32t$1,%1,0nt"
- "ort$1,$1,%0nt"
- "ddivut$0,$1,%3nt"
- "mflot$1nt"
- "dsll32t%0,%4,0nt"
- "nopnt"
- "ddivut$0,%0,$1nt"
- "mflot%0nt"
- ".settmips0nt"
- ".settatnt"
- ".settreorder"
- :"=&r" (quotient)
- :"r" (timerhi),
- "m" (timerlo),
- "r" (tmp),
- "r" (USECS_PER_JIFFY));
- cached_quotient = quotient;
- }
- /* Get last timer tick in absolute kernel time */
- count = read_32bit_cp0_register(CP0_COUNT);
- /* .. relative to previous jiffy (32 bits is enough) */
- count -= timerlo;
- __asm__("multut%1,%2nt"
- "mfhit%0"
- :"=r" (res)
- :"r" (count),
- "r" (quotient));
- /*
- * Due to possible jiffies inconsistencies, we need to check
- * the result so that we'll get a timer that is monotonic.
- */
- if (res >= USECS_PER_JIFFY)
- res = USECS_PER_JIFFY-1;
- return res;
- }
- /*
- * local_timer_interrupt() does profiling and process accounting
- * on a per-CPU basis.
- *
- * In UP mode, it is invoked from the (global) timer_interrupt.
- *
- * In SMP mode, it might invoked by per-CPU timer interrupt, or
- * a broadcasted inter-processor interrupt which itself is triggered
- * by the global timer interrupt.
- */
- void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- if(!user_mode(regs)) {
- if (prof_buffer && current->pid) {
- extern int _stext;
- unsigned long pc = regs->cp0_epc;
- pc -= (unsigned long) &_stext;
- pc >>= prof_shift;
- /*
- * Dont ignore out-of-bounds pc values silently,
- * put them into the last histogram slot, so if
- * present, they will show up as a sharp peak.
- */
- if (pc > prof_len-1)
- pc = prof_len-1;
- atomic_inc((atomic_t *)&prof_buffer[pc]);
- }
- }
- #if defined(CONFIG_SMP)
- /* in UP mode, update_process_times() is invoked by do_timer() */
- update_process_times(user_mode(regs));
- #endif
- }
- /*
- * high-level timer interrupt service routines. This function
- * is set as irqaction->handler and is invoked through do_IRQ.
- */
- void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- if (mips_cpu.options & MIPS_CPU_COUNTER) {
- unsigned int count;
- /*
- * The cycle counter is only 32 bit which is good for about
- * a minute at current count rates of upto 150MHz or so.
- */
- count = read_32bit_cp0_register(CP0_COUNT);
- timerhi += (count < timerlo); /* Wrap around */
- timerlo = count;
- /*
- * set up for next timer interrupt - no harm if the machine
- * is using another timer interrupt source.
- * Note that writing to COMPARE register clears the interrupt
- */
- write_32bit_cp0_register (CP0_COMPARE,
- count + cycles_per_jiffy);
- }
- /*
- * call the generic timer interrupt handling
- */
- do_timer(regs);
- /*
- * If we have an externally synchronized Linux clock, then update
- * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
- * called as close as possible to 500 ms before the new second starts.
- */
- read_lock (&xtime_lock);
- if ((time_status & STA_UNSYNC) == 0 &&
- xtime.tv_sec > last_rtc_update + 660 &&
- xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
- xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
- if (rtc_set_time(xtime.tv_sec) == 0) {
- last_rtc_update = xtime.tv_sec;
- } else {
- last_rtc_update = xtime.tv_sec - 600;
- /* do it again in 60 s */
- }
- }
- read_unlock (&xtime_lock);
- /*
- * If jiffies has overflowed in this timer_interrupt we must
- * update the timer[hi]/[lo] to make fast gettimeoffset funcs
- * quotient calc still valid. -arca
- */
- if (!jiffies) {
- timerhi = timerlo = 0;
- }
- #if !defined(CONFIG_SMP)
- /*
- * In UP mode, we call local_timer_interrupt() to do profiling
- * and process accouting.
- *
- * In SMP mode, local_timer_interrupt() is invoked by appropriate
- * low-level local timer interrupt handler.
- */
- local_timer_interrupt(0, NULL, regs);
- #else /* CONFIG_SMP */
- if (emulate_local_timer_interrupt) {
- /*
- * this is the place where we send out inter-process
- * interrupts and let each CPU do its own profiling
- * and process accouting.
- *
- * Obviously we need to call local_timer_interrupt() for
- * the current CPU too.
- */
- panic("Not implemented yet!!!");
- }
- #endif /* CONFIG_SMP */
- }
- asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
- {
- int cpu = smp_processor_id();
- irq_enter(cpu, irq);
- kstat.irqs[cpu][irq]++;
- /* we keep interrupt disabled all the time */
- timer_interrupt(irq, NULL, regs);
- irq_exit(cpu, irq);
- if (softirq_pending(cpu))
- do_softirq();
- }
- asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
- {
- int cpu = smp_processor_id();
- irq_enter(cpu, irq);
- kstat.irqs[cpu][irq]++;
- /* we keep interrupt disabled all the time */
- local_timer_interrupt(irq, NULL, regs);
- irq_exit(cpu, irq);
- if (softirq_pending(cpu))
- do_softirq();
- }
- /*
- * time_init() - it does the following things.
- *
- * 1) board_time_init() -
- * a) (optional) set up RTC routines,
- * b) (optional) calibrate and set the mips_counter_frequency
- * (only needed if you intended to use fixed_rate_gettimeoffset
- * or use cpu counter as timer interrupt source)
- * 2) setup xtime based on rtc_get_time().
- * 3) choose a appropriate gettimeoffset routine.
- * 4) calculate a couple of cached variables for later usage
- * 5) board_timer_setup() -
- * a) (optional) over-write any choices made above by time_init().
- * b) machine specific code should setup the timer irqaction.
- * c) enable the timer interrupt
- */
- void (*board_time_init)(void) = NULL;
- void (*board_timer_setup)(struct irqaction *irq) = NULL;
- unsigned int mips_counter_frequency = 0;
- static struct irqaction timer_irqaction = {
- timer_interrupt,
- SA_INTERRUPT,
- 0,
- "timer",
- NULL,
- NULL};
- void __init time_init(void)
- {
- if (board_time_init)
- board_time_init();
- xtime.tv_sec = rtc_get_time();
- xtime.tv_usec = 0;
- /* choose appropriate gettimeoffset routine */
- if (!(mips_cpu.options & MIPS_CPU_COUNTER)) {
- /* no cpu counter - sorry */
- do_gettimeoffset = null_gettimeoffset;
- } else if (mips_counter_frequency != 0) {
- /* we have cpu counter and know counter frequency! */
- do_gettimeoffset = fixed_rate_gettimeoffset;
- } else if ((mips_cpu.isa_level == MIPS_CPU_ISA_M32) ||
- (mips_cpu.isa_level == MIPS_CPU_ISA_I) ||
- (mips_cpu.isa_level == MIPS_CPU_ISA_II) ) {
- /* we need to calibrate the counter but we don't have
- * 64-bit division. */
- do_gettimeoffset = calibrate_div32_gettimeoffset;
- } else {
- /* we need to calibrate the counter but we *do* have
- * 64-bit division. */
- do_gettimeoffset = calibrate_div64_gettimeoffset;
- }
- /* caclulate cache parameters */
- if (mips_counter_frequency) {
- u32 count;
- cycles_per_jiffy = mips_counter_frequency / HZ;
- /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
- /* any better way to do this? */
- sll32_usecs_per_cycle = mips_counter_frequency / 100000;
- sll32_usecs_per_cycle = 0xffffffff / sll32_usecs_per_cycle;
- sll32_usecs_per_cycle *= 10;
- /*
- * For those using cpu counter as timer, this sets up the
- * first interrupt
- */
- count = read_32bit_cp0_register(CP0_COUNT);
- write_32bit_cp0_register (CP0_COMPARE,
- count + cycles_per_jiffy);
- }
- /*
- * Call board specific timer interrupt setup.
- *
- * this pointer must be setup in machine setup routine.
- *
- * Even if the machine choose to use low-level timer interrupt,
- * it still needs to setup the timer_irqaction.
- * In that case, it might be better to set timer_irqaction.handler
- * to be NULL function so that we are sure the high-level code
- * is not invoked accidentally.
- */
- board_timer_setup(&timer_irqaction);
- }
- #define FEBRUARY 2
- #define STARTOFTIME 1970
- #define SECDAY 86400L
- #define SECYR (SECDAY * 365)
- #define leapyear(year) ((year) % 4 == 0)
- #define days_in_year(a) (leapyear(a) ? 366 : 365)
- #define days_in_month(a) (month_days[(a) - 1])
- static int month_days[12] = {
- 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
- };
- void to_tm(unsigned long tim, struct rtc_time * tm)
- {
- long hms, day, gday;
- int i;
- gday = day = tim / SECDAY;
- hms = tim % SECDAY;
- /* Hours, minutes, seconds are easy */
- tm->tm_hour = hms / 3600;
- tm->tm_min = (hms % 3600) / 60;
- tm->tm_sec = (hms % 3600) % 60;
- /* Number of years in days */
- for (i = STARTOFTIME; day >= days_in_year(i); i++)
- day -= days_in_year(i);
- tm->tm_year = i;
- /* Number of months in days left */
- if (leapyear(tm->tm_year))
- days_in_month(FEBRUARY) = 29;
- for (i = 1; day >= days_in_month(i); i++)
- day -= days_in_month(i);
- days_in_month(FEBRUARY) = 28;
- tm->tm_mon = i-1; /* tm_mon starts from 0 to 11 */
- /* Days are what is left over (+1) from all that. */
- tm->tm_mday = day + 1;
- /*
- * Determine the day of week
- */
- tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
- }