smp.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:14k
- /*
- * Intel SMP support routines.
- *
- * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
- * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
- *
- * This code is released under the GNU General Public License version 2 or
- * later.
- */
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/irq.h>
- #include <linux/delay.h>
- #include <linux/spinlock.h>
- #include <linux/smp_lock.h>
- #include <linux/kernel_stat.h>
- #include <linux/mc146818rtc.h>
- #include <asm/mtrr.h>
- #include <asm/pgalloc.h>
- /*
- * Some notes on x86 processor bugs affecting SMP operation:
- *
- * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
- * The Linux implications for SMP are handled as follows:
- *
- * Pentium III / [Xeon]
- * None of the E1AP-E3AP errata are visible to the user.
- *
- * E1AP. see PII A1AP
- * E2AP. see PII A2AP
- * E3AP. see PII A3AP
- *
- * Pentium II / [Xeon]
- * None of the A1AP-A3AP errata are visible to the user.
- *
- * A1AP. see PPro 1AP
- * A2AP. see PPro 2AP
- * A3AP. see PPro 7AP
- *
- * Pentium Pro
- * None of 1AP-9AP errata are visible to the normal user,
- * except occasional delivery of 'spurious interrupt' as trap #15.
- * This is very rare and a non-problem.
- *
- * 1AP. Linux maps APIC as non-cacheable
- * 2AP. worked around in hardware
- * 3AP. fixed in C0 and above steppings microcode update.
- * Linux does not use excessive STARTUP_IPIs.
- * 4AP. worked around in hardware
- * 5AP. symmetric IO mode (normal Linux operation) not affected.
- * 'noapic' mode has vector 0xf filled out properly.
- * 6AP. 'noapic' mode might be affected - fixed in later steppings
- * 7AP. We do not assume writes to the LVT deassering IRQs
- * 8AP. We do not enable low power mode (deep sleep) during MP bootup
- * 9AP. We do not use mixed mode
- *
- * Pentium
- * There is a marginal case where REP MOVS on 100MHz SMP
- * machines with B stepping processors can fail. XXX should provide
- * an L1cache=Writethrough or L1cache=off option.
- *
- * B stepping CPUs may hang. There are hardware work arounds
- * for this. We warn about it in case your board doesnt have the work
- * arounds. Basically thats so I can tell anyone with a B stepping
- * CPU and SMP problems "tough".
- *
- * Specific items [From Pentium Processor Specification Update]
- *
- * 1AP. Linux doesn't use remote read
- * 2AP. Linux doesn't trust APIC errors
- * 3AP. We work around this
- * 4AP. Linux never generated 3 interrupts of the same priority
- * to cause a lost local interrupt.
- * 5AP. Remote read is never used
- * 6AP. not affected - worked around in hardware
- * 7AP. not affected - worked around in hardware
- * 8AP. worked around in hardware - we get explicit CS errors if not
- * 9AP. only 'noapic' mode affected. Might generate spurious
- * interrupts, we log only the first one and count the
- * rest silently.
- * 10AP. not affected - worked around in hardware
- * 11AP. Linux reads the APIC between writes to avoid this, as per
- * the documentation. Make sure you preserve this as it affects
- * the C stepping chips too.
- * 12AP. not affected - worked around in hardware
- * 13AP. not affected - worked around in hardware
- * 14AP. we always deassert INIT during bootup
- * 15AP. not affected - worked around in hardware
- * 16AP. not affected - worked around in hardware
- * 17AP. not affected - worked around in hardware
- * 18AP. not affected - worked around in hardware
- * 19AP. not affected - worked around in BIOS
- *
- * If this sounds worrying believe me these bugs are either ___RARE___,
- * or are signal timing bugs worked around in hardware and there's
- * about nothing of note with C stepping upwards.
- */
- /* The 'big kernel lock' */
- spinlock_cacheline_t kernel_flag_cacheline = {SPIN_LOCK_UNLOCKED};
- struct tlb_state cpu_tlbstate[NR_CPUS] __cacheline_aligned = {[0 ... NR_CPUS-1] = { &init_mm, 0, }};
- /*
- * the following functions deal with sending IPIs between CPUs.
- *
- * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
- */
- static inline unsigned int __prepare_ICR (unsigned int shortcut, int vector)
- {
- unsigned int icr = APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;
- if (vector == KDB_VECTOR)
- icr = (icr & (~APIC_VECTOR_MASK)) | APIC_DM_NMI;
- return icr;
- }
- static inline int __prepare_ICR2 (unsigned int mask)
- {
- return SET_APIC_DEST_FIELD(mask);
- }
- static inline void __send_IPI_shortcut(unsigned int shortcut, int vector)
- {
- /*
- * Subtle. In the case of the 'never do double writes' workaround
- * we have to lock out interrupts to be safe. As we don't care
- * of the value read we use an atomic rmw access to avoid costly
- * cli/sti. Otherwise we use an even cheaper single atomic write
- * to the APIC.
- */
- unsigned int cfg;
- /*
- * Wait for idle.
- */
- apic_wait_icr_idle();
- /*
- * No need to touch the target chip field
- */
- cfg = __prepare_ICR(shortcut, vector);
- /*
- * Send the IPI. The write to APIC_ICR fires this off.
- */
- apic_write_around(APIC_ICR, cfg);
- }
- static inline void send_IPI_allbutself(int vector)
- {
- /*
- * if there are no other CPUs in the system then
- * we get an APIC send error if we try to broadcast.
- * thus we have to avoid sending IPIs in this case.
- */
- if (smp_num_cpus > 1)
- __send_IPI_shortcut(APIC_DEST_ALLBUT, vector);
- }
- static inline void send_IPI_all(int vector)
- {
- __send_IPI_shortcut(APIC_DEST_ALLINC, vector);
- }
- void send_IPI_self(int vector)
- {
- __send_IPI_shortcut(APIC_DEST_SELF, vector);
- }
- static inline void send_IPI_mask(int mask, int vector)
- {
- unsigned long cfg;
- unsigned long flags;
- __save_flags(flags);
- __cli();
- /*
- * Wait for idle.
- */
- apic_wait_icr_idle();
- /*
- * prepare target chip field
- */
- cfg = __prepare_ICR2(mask);
- apic_write_around(APIC_ICR2, cfg);
- /*
- * program the ICR
- */
- cfg = __prepare_ICR(0, vector);
-
- /*
- * Send the IPI. The write to APIC_ICR fires this off.
- */
- apic_write_around(APIC_ICR, cfg);
- __restore_flags(flags);
- }
- /*
- * Smarter SMP flushing macros.
- * c/o Linus Torvalds.
- *
- * These mean you can really definitely utterly forget about
- * writing to user space from interrupts. (Its not allowed anyway).
- *
- * Optimizations Manfred Spraul <manfred@colorfullife.com>
- */
- static volatile unsigned long flush_cpumask;
- static struct mm_struct * flush_mm;
- static unsigned long flush_va;
- static spinlock_t tlbstate_lock = SPIN_LOCK_UNLOCKED;
- #define FLUSH_ALL 0xffffffff
- /*
- * We cannot call mmdrop() because we are in interrupt context,
- * instead update mm->cpu_vm_mask.
- */
- static void inline leave_mm (unsigned long cpu)
- {
- if (cpu_tlbstate[cpu].state == TLBSTATE_OK)
- BUG();
- clear_bit(cpu, &cpu_tlbstate[cpu].active_mm->cpu_vm_mask);
- /* flush TLB before it goes away. this stops speculative prefetches */
- __flush_tlb();
- }
- /*
- *
- * The flush IPI assumes that a thread switch happens in this order:
- * [cpu0: the cpu that switches]
- * 1) switch_mm() either 1a) or 1b)
- * 1a) thread switch to a different mm
- * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask);
- * Stop ipi delivery for the old mm. This is not synchronized with
- * the other cpus, but smp_invalidate_interrupt ignore flush ipis
- * for the wrong mm, and in the worst case we perform a superflous
- * tlb flush.
- * 1a2) set cpu_tlbstate to TLBSTATE_OK
- * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
- * was in lazy tlb mode.
- * 1a3) update cpu_tlbstate[].active_mm
- * Now cpu0 accepts tlb flushes for the new mm.
- * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask);
- * Now the other cpus will send tlb flush ipis.
- * 1a4) change cr3.
- * 1b) thread switch without mm change
- * cpu_tlbstate[].active_mm is correct, cpu0 already handles
- * flush ipis.
- * 1b1) set cpu_tlbstate to TLBSTATE_OK
- * 1b2) test_and_set the cpu bit in cpu_vm_mask.
- * Atomically set the bit [other cpus will start sending flush ipis],
- * and test the bit.
- * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
- * 2) switch %%esp, ie current
- *
- * The interrupt must handle 2 special cases:
- * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
- * - the cpu performs speculative tlb reads, i.e. even if the cpu only
- * runs in kernel space, the cpu could load tlb entries for user space
- * pages.
- *
- * The good news is that cpu_tlbstate is local to each cpu, no
- * write/read ordering problems.
- */
- /*
- * TLB flush IPI:
- *
- * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
- * 2) Leave the mm if we are in the lazy tlb mode.
- */
- asmlinkage void smp_invalidate_interrupt (void)
- {
- unsigned long cpu = smp_processor_id();
- if (!test_bit(cpu, &flush_cpumask))
- return;
- /*
- * This was a BUG() but until someone can quote me the
- * line from the intel manual that guarantees an IPI to
- * multiple CPUs is retried _only_ on the erroring CPUs
- * its staying as a return
- *
- * BUG();
- */
-
- if (flush_mm == cpu_tlbstate[cpu].active_mm) {
- if (cpu_tlbstate[cpu].state == TLBSTATE_OK) {
- if (flush_va == FLUSH_ALL)
- local_flush_tlb();
- else
- __flush_tlb_one(flush_va);
- } else
- leave_mm(cpu);
- }
- ack_APIC_irq();
- clear_bit(cpu, &flush_cpumask);
- }
- static void flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
- unsigned long va)
- {
- /*
- * A couple of (to be removed) sanity checks:
- *
- * - we do not send IPIs to not-yet booted CPUs.
- * - current CPU must not be in mask
- * - mask must exist :)
- */
- if (!cpumask)
- BUG();
- if ((cpumask & cpu_online_map) != cpumask)
- BUG();
- if (cpumask & (1 << smp_processor_id()))
- BUG();
- if (!mm)
- BUG();
- /*
- * i'm not happy about this global shared spinlock in the
- * MM hot path, but we'll see how contended it is.
- * Temporarily this turns IRQs off, so that lockups are
- * detected by the NMI watchdog.
- */
- spin_lock(&tlbstate_lock);
-
- flush_mm = mm;
- flush_va = va;
- atomic_set_mask(cpumask, &flush_cpumask);
- /*
- * We have to send the IPI only to
- * CPUs affected.
- */
- send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
- while (flush_cpumask)
- /* nothing. lockup detection does not belong here */;
- flush_mm = NULL;
- flush_va = 0;
- spin_unlock(&tlbstate_lock);
- }
-
- void flush_tlb_current_task(void)
- {
- struct mm_struct *mm = current->mm;
- unsigned long cpu_mask = mm->cpu_vm_mask & ~(1 << smp_processor_id());
- local_flush_tlb();
- if (cpu_mask)
- flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
- }
- void flush_tlb_mm (struct mm_struct * mm)
- {
- unsigned long cpu_mask = mm->cpu_vm_mask & ~(1 << smp_processor_id());
- if (current->active_mm == mm) {
- if (current->mm)
- local_flush_tlb();
- else
- leave_mm(smp_processor_id());
- }
- if (cpu_mask)
- flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
- }
- void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
- {
- struct mm_struct *mm = vma->vm_mm;
- unsigned long cpu_mask = mm->cpu_vm_mask & ~(1 << smp_processor_id());
- if (current->active_mm == mm) {
- if(current->mm)
- __flush_tlb_one(va);
- else
- leave_mm(smp_processor_id());
- }
- if (cpu_mask)
- flush_tlb_others(cpu_mask, mm, va);
- }
- static inline void do_flush_tlb_all_local(void)
- {
- unsigned long cpu = smp_processor_id();
- __flush_tlb_all();
- if (cpu_tlbstate[cpu].state == TLBSTATE_LAZY)
- leave_mm(cpu);
- }
- static void flush_tlb_all_ipi(void* info)
- {
- do_flush_tlb_all_local();
- }
- void flush_tlb_all(void)
- {
- smp_call_function (flush_tlb_all_ipi,0,1,1);
- do_flush_tlb_all_local();
- }
- void smp_kdb_stop(void)
- {
- send_IPI_allbutself(KDB_VECTOR);
- }
- /*
- * this function sends a 'reschedule' IPI to another CPU.
- * it goes straight through and wastes no time serializing
- * anything. Worst case is that we lose a reschedule ...
- */
- void smp_send_reschedule(int cpu)
- {
- send_IPI_mask(1 << cpu, RESCHEDULE_VECTOR);
- }
- /*
- * Structure and data for smp_call_function(). This is designed to minimise
- * static memory requirements. It also looks cleaner.
- */
- static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;
- struct call_data_struct {
- void (*func) (void *info);
- void *info;
- atomic_t started;
- atomic_t finished;
- int wait;
- };
- static struct call_data_struct * call_data;
- /*
- * this function sends a 'generic call function' IPI to all other CPUs
- * in the system.
- */
- int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
- int wait)
- /*
- * [SUMMARY] Run a function on all other CPUs.
- * <func> The function to run. This must be fast and non-blocking.
- * <info> An arbitrary pointer to pass to the function.
- * <nonatomic> currently unused.
- * <wait> If true, wait (atomically) until function has completed on other CPUs.
- * [RETURNS] 0 on success, else a negative status code. Does not return until
- * remote CPUs are nearly ready to execute <<func>> or are or have executed.
- *
- * You must not call this function with disabled interrupts or from a
- * hardware interrupt handler or from a bottom half handler.
- */
- {
- struct call_data_struct data;
- int cpus = smp_num_cpus-1;
- if (!cpus)
- return 0;
- data.func = func;
- data.info = info;
- atomic_set(&data.started, 0);
- data.wait = wait;
- if (wait)
- atomic_set(&data.finished, 0);
- spin_lock(&call_lock);
- call_data = &data;
- wmb();
- /* Send a message to all other CPUs and wait for them to respond */
- send_IPI_allbutself(CALL_FUNCTION_VECTOR);
- /* Wait for response */
- while (atomic_read(&data.started) != cpus)
- barrier();
- if (wait)
- while (atomic_read(&data.finished) != cpus)
- barrier();
- spin_unlock(&call_lock);
- return 0;
- }
- static void stop_this_cpu (void * dummy)
- {
- /*
- * Remove this CPU:
- */
- clear_bit(smp_processor_id(), &cpu_online_map);
- __cli();
- disable_local_APIC();
- for(;;) __asm__("hlt");
- for (;;);
- }
- /*
- * this function calls the 'stop' function on all other CPUs in the system.
- */
- void smp_send_stop(void)
- {
- smp_call_function(stop_this_cpu, NULL, 1, 0);
- smp_num_cpus = 1;
- __cli();
- disable_local_APIC();
- __sti();
- }
- /*
- * Reschedule call back. Nothing to do,
- * all the work is done automatically when
- * we return from the interrupt.
- */
- asmlinkage void smp_reschedule_interrupt(void)
- {
- ack_APIC_irq();
- }
- asmlinkage void smp_call_function_interrupt(void)
- {
- void (*func) (void *info) = call_data->func;
- void *info = call_data->info;
- int wait = call_data->wait;
- ack_APIC_irq();
- /*
- * Notify initiating CPU that I've grabbed the data and am
- * about to execute the function
- */
- mb();
- atomic_inc(&call_data->started);
- /*
- * At this point the info structure may be out of scope unless wait==1
- */
- (*func)(info);
- if (wait) {
- mb();
- atomic_inc(&call_data->finished);
- }
- }