time.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:11k
- /*
- * linux/arch/x86-64/kernel/time.c
- *
- * "High Precision Event Timer" based timekeeping.
- *
- * Copyright (c) 1991,1992,1995 Linus Torvalds
- * Copyright (c) 1994 Alan Modra
- * Copyright (c) 1995 Markus Kuhn
- * Copyright (c) 1996 Ingo Molnar
- * Copyright (c) 1998 Andrea Arcangeli
- * Copyright (c) 2002 Vojtech Pavlik
- *
- */
- #define HPET_BIOS_SUPPORT_WORKING
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/mc146818rtc.h>
- #include <linux/irq.h>
- #include <linux/ioport.h>
- #include <asm/vsyscall.h>
- #include <asm/timex.h>
- extern rwlock_t xtime_lock;
- spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
- unsigned int cpu_khz; /* TSC clocks / usec, not used here */
- unsigned long hpet_period; /* fsecs / HPET clock */
- unsigned long hpet_tick; /* HPET clocks / interrupt */
- int hpet_report_lost_ticks; /* command line option */
- struct hpet_data __hpet __section_hpet; /* address, quotient, trigger, hz */
- volatile unsigned long __jiffies __section_jiffies;
- unsigned long __wall_jiffies __section_wall_jiffies;
- struct timeval __xtime __section_xtime;
- struct timezone __sys_tz __section_sys_tz;
- /*
- * do_gettimeoffset() returns microseconds since last timer interrupt was
- * triggered by hardware. A memory read of HPET is slower than a register read
- * of TSC, but much more reliable. It's also synchronized to the timer
- * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
- * timer interrupt has happened already, but hpet.trigger wasn't updated yet.
- * This is not a problem, because jiffies hasn't updated either. They are bound
- * together by xtime_lock.
- */
- static spinlock_t time_offset_lock = SPIN_LOCK_UNLOCKED;
- static unsigned long timeoffset = 0;
- inline unsigned int do_gettimeoffset(void)
- {
- unsigned long t;
- rdtscll(t);
- return (t - hpet.last_tsc) * (1000000L / HZ) / hpet.ticks + hpet.offset;
- }
- /*
- * This version of gettimeofday() has microsecond resolution and better than
- * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
- * MHz) HPET timer.
- */
- void do_gettimeofday(struct timeval *tv)
- {
- unsigned long flags, t;
- unsigned int sec, usec;
- read_lock_irqsave(&xtime_lock, flags);
- spin_lock(&time_offset_lock);
- sec = xtime.tv_sec;
- usec = xtime.tv_usec;
- t = (jiffies - wall_jiffies) * (1000000L / HZ) + do_gettimeoffset();
- if (t > timeoffset) timeoffset = t;
- usec += timeoffset;
- spin_unlock(&time_offset_lock);
- read_unlock_irqrestore(&xtime_lock, flags);
- tv->tv_sec = sec + usec / 1000000;
- tv->tv_usec = usec % 1000000;
- }
- /*
- * settimeofday() first undoes the correction that gettimeofday would do
- * on the time, and then saves it. This is ugly, but has been like this for
- * ages already.
- */
- void do_settimeofday(struct timeval *tv)
- {
- write_lock_irq(&xtime_lock);
- vxtime_lock();
- tv->tv_usec -= do_gettimeoffset() +
- (jiffies - wall_jiffies) * tick;
- while (tv->tv_usec < 0) {
- tv->tv_usec += 1000000;
- tv->tv_sec--;
- }
- xtime = *tv;
- vxtime_unlock();
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
- write_unlock_irq(&xtime_lock);
- }
- /*
- * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
- * ms after the second nowtime has started, because when nowtime is written
- * into the registers of the CMOS clock, it will jump to the next second
- * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
- * sheet for details.
- */
- static void set_rtc_mmss(unsigned long nowtime)
- {
- int real_seconds, real_minutes, cmos_minutes;
- unsigned char control, freq_select;
- /*
- * IRQs are disabled when we're called from the timer interrupt,
- * no need for spin_lock_irqsave()
- */
- spin_lock(&rtc_lock);
- /*
- * Tell the clock it's being set and stop it.
- */
- control = CMOS_READ(RTC_CONTROL);
- CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
- freq_select = CMOS_READ(RTC_FREQ_SELECT);
- CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
- cmos_minutes = CMOS_READ(RTC_MINUTES);
- BCD_TO_BIN(cmos_minutes);
- /*
- * since we're only adjusting minutes and seconds, don't interfere with hour
- * overflow. This avoids messing with unknown time zones but requires your RTC
- * not to be off by more than 15 minutes. Since we're calling it only when
- * our clock is externally synchronized using NTP, this shouldn't be a problem.
- */
- real_seconds = nowtime % 60;
- real_minutes = nowtime / 60;
- if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
- real_minutes += 30; /* correct for half hour time zone */
- real_minutes %= 60;
- if (abs(real_minutes - cmos_minutes) < 30) {
- BIN_TO_BCD(real_seconds);
- BIN_TO_BCD(real_minutes);
- CMOS_WRITE(real_seconds, RTC_SECONDS);
- CMOS_WRITE(real_minutes, RTC_MINUTES);
- } else
- printk(KERN_WARNING "time.c: can't update CMOS clock from %d to %dn",
- cmos_minutes, real_minutes);
- /*
- * The following flags have to be released exactly in this order, otherwise the
- * DS12887 (popular MC146818A clone with integrated battery and quartz) will
- * not reset the oscillator and will not update precisely 500 ms later. You
- * won't find this mentioned in the Dallas Semiconductor data sheets, but who
- * believes data sheets anyway ... -- Markus Kuhn
- */
- CMOS_WRITE(control, RTC_CONTROL);
- CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
- spin_unlock(&rtc_lock);
- }
- static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- static unsigned long rtc_update = 0;
- /*
- * Here we are in the timer irq handler. We have irqs locally disabled (so we
- * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
- * on the other CPU, so we need a lock. We also need to lock the vsyscall
- * variables, because both do_timer() and us change them -arca+vojtech
- */
- write_lock(&xtime_lock);
- vxtime_lock();
- {
- unsigned long t;
- rdtscll(t);
- hpet.offset = (t - hpet.last_tsc) * (1000000L / HZ) / hpet.ticks + hpet.offset - 1000000L / HZ;
- if (hpet.offset >= 1000000L / HZ)
- hpet.offset = 0;
- hpet.ticks = min_t(long, max_t(long, (t - hpet.last_tsc) * (1000000L / HZ) / (1000000L / HZ - hpet.offset),
- cpu_khz * 1000/HZ * 15 / 16), cpu_khz * 1000/HZ * 16 / 15);
- hpet.last_tsc = t;
- }
- /*
- * Do the timer stuff.
- */
- do_timer(regs);
- /*
- * If we have an externally synchronized Linux clock, then update CMOS clock
- * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
- * closest to exactly 500 ms before the next second. If the update fails, we
- * don'tcare, as it'll be updated on the next turn, and the problem (time way
- * off) isn't likely to go away much sooner anyway.
- */
- if ((~time_status & STA_UNSYNC) && xtime.tv_sec > rtc_update &&
- abs(xtime.tv_usec - 500000) <= tick / 2) {
- set_rtc_mmss(xtime.tv_sec);
- rtc_update = xtime.tv_sec + 660;
- }
- vxtime_unlock();
- write_unlock(&xtime_lock);
- }
- static unsigned long get_cmos_time(void)
- {
- unsigned int timeout, year, mon, day, hour, min, sec;
- unsigned char last, this;
- /*
- * The Linux interpretation of the CMOS clock register contents: When the
- * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
- * second which has precisely just started. Waiting for this can take up to 1
- * second, we timeout approximately after 2.4 seconds on a machine with
- * standard 8.3 MHz ISA bus.
- */
- spin_lock(&rtc_lock);
- timeout = 1000000;
- last = this = 0;
- while (timeout && last && !this) {
- last = this;
- this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
- timeout--;
- }
- /*
- * Here we are safe to assume the registers won't change for a whole second, so
- * we just go ahead and read them.
- */
- sec = CMOS_READ(RTC_SECONDS);
- min = CMOS_READ(RTC_MINUTES);
- hour = CMOS_READ(RTC_HOURS);
- day = CMOS_READ(RTC_DAY_OF_MONTH);
- mon = CMOS_READ(RTC_MONTH);
- year = CMOS_READ(RTC_YEAR);
- spin_unlock(&rtc_lock);
- /*
- * We know that x86-64 always uses BCD format, no need to check the config
- * register.
- */
- BCD_TO_BIN(sec);
- BCD_TO_BIN(min);
- BCD_TO_BIN(hour);
- BCD_TO_BIN(day);
- BCD_TO_BIN(mon);
- BCD_TO_BIN(year);
- /*
- * This will work up to Dec 31, 2069.
- */
- if ((year += 1900) < 1970)
- year += 100;
- return mktime(year, mon, day, hour, min, sec);
- }
- /*
- * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
- * it to the HPET timer of known frequency.
- */
- #define TICK_COUNT 100000000
- static unsigned int __init hpet_calibrate_tsc(void)
- {
- int tsc_start, hpet_start;
- int tsc_now, hpet_now;
- unsigned long flags;
- __save_flags(flags);
- __cli();
- hpet_start = hpet_readl(HPET_COUNTER);
- rdtscl(tsc_start);
- do {
- __cli();
- hpet_now = hpet_readl(HPET_COUNTER);
- rdtscl(tsc_now);
- __restore_flags(flags);
- } while ((tsc_now - tsc_start) < TICK_COUNT && (hpet_now - hpet_start) < TICK_COUNT);
- return (tsc_now - tsc_start) * 1000000000L
- / ((hpet_now - hpet_start) * hpet_period / 1000);
- }
- /*
- * pit_calibrate_tsc() uses the speaker output (channel 2) of
- * the PIT. This is better than using the timer interrupt output,
- * because we can read the value of the speaker with just one inb(),
- * where we need three i/o operations for the interrupt channel.
- * We count how many ticks the TSC does in 50 ms.
- */
- static unsigned int __init pit_calibrate_tsc(void)
- {
- unsigned long start, end;
- unsigned long flags;
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
- __save_flags(flags);
- __cli();
- outb(0xb0, 0x43);
- outb((1193182 / (1000 / 50)) & 0xff, 0x42);
- outb((1193182 / (1000 / 50)) >> 8, 0x42);
- rdtscll(start);
- while ((inb(0x61) & 0x20) == 0);
- rdtscll(end);
- __restore_flags(flags);
- return (end - start) / 50;
- }
- static int hpet_init(void)
- {
- unsigned int cfg, id;
- if (!hpet.address)
- return -1;
- set_fixmap_nocache(FIX_HPET_BASE, hpet.address);
- /*
- * Read the period, compute tick and quotient.
- */
- id = hpet_readl(HPET_ID);
- if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER) || !(id & HPET_ID_LEGSUP))
- return -1;
- hpet_period = hpet_readl(HPET_PERIOD);
- if (hpet_period < 100000 || hpet_period > 100000000)
- return -1;
- hpet_tick = (1000000000L * tick + hpet_period / 2) / hpet_period;
- /*
- * Stop the timers and reset the main counter.
- */
- cfg = hpet_readl(HPET_CFG);
- cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
- hpet_writel(cfg, HPET_CFG);
- hpet_writel(0, HPET_COUNTER);
- hpet_writel(0, HPET_COUNTER + 4);
- /*
- * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
- * and period also hpet_tick.
- */
- hpet_writel(HPET_T0_ENABLE | HPET_T0_PERIODIC | HPET_T0_SETVAL | HPET_T0_32BIT, HPET_T0_CFG);
- hpet_writel(hpet_tick, HPET_T0_CMP);
- hpet_writel(hpet_tick, HPET_T0_CMP);
- /*
- * Go!
- */
- cfg |= HPET_CFG_ENABLE | HPET_CFG_LEGACY;
- hpet_writel(cfg, HPET_CFG);
- return 0;
- }
- void __init pit_init(void)
- {
- outb_p(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */
- outb_p(LATCH & 0xff, 0x40); /* LSB */
- outb_p(LATCH >> 8, 0x40); /* MSB */
- }
- int __init time_setup(char *str)
- {
- hpet_report_lost_ticks = 1;
- return 1;
- }
- static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
- extern void __init config_acpi_tables(void);
- void __init time_init(void)
- {
- xtime.tv_sec = get_cmos_time();
- xtime.tv_usec = 0;
- printk(KERN_WARNING "time.c: HPET timer not found, precise timing unavailable.n");
- pit_init();
- printk(KERN_INFO "time.c: Using 1.1931816 MHz PIT timer.n");
- setup_irq(0, &irq0);
- cpu_khz = pit_calibrate_tsc();
- printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.n",
- cpu_khz / 1000, cpu_khz % 1000);
- hpet.ticks = cpu_khz * (1000 / HZ);
- rdtscll(hpet.last_tsc);
- }
- __setup("report_lost_ticks", time_setup);