fcc_enet.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:41k
- /*
- * BK Id: SCCS/s.fcc_enet.c 1.7 05/17/01 18:14:20 cort
- */
- /*
- * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
- * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
- *
- * This version of the driver is a combination of the 8xx fec and
- * 8260 SCC Ethernet drivers. People seem to be choosing common I/O
- * configurations, so this driver will work on the EST8260 boards and
- * others yet to be announced.
- *
- * Right now, I am very watseful with the buffers. I allocate memory
- * pages and then divide them into 2K frame buffers. This way I know I
- * have buffers large enough to hold one frame within one buffer descriptor.
- * Once I get this working, I will use 64 or 128 byte CPM buffers, which
- * will be much more memory efficient and will easily handle lots of
- * small packets.
- *
- */
- #include <linux/config.h>
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/string.h>
- #include <linux/ptrace.h>
- #include <linux/errno.h>
- #include <linux/ioport.h>
- #include <linux/slab.h>
- #include <linux/interrupt.h>
- #include <linux/pci.h>
- #include <linux/init.h>
- #include <linux/delay.h>
- #include <linux/netdevice.h>
- #include <linux/etherdevice.h>
- #include <linux/skbuff.h>
- #include <linux/spinlock.h>
- #include <asm/immap_8260.h>
- #include <asm/pgtable.h>
- #include <asm/mpc8260.h>
- #include <asm/irq.h>
- #include <asm/bitops.h>
- #include <asm/uaccess.h>
- #include <asm/cpm_8260.h>
- /* The transmitter timeout
- */
- #define TX_TIMEOUT (2*HZ)
- /* The number of Tx and Rx buffers. These are allocated from the page
- * pool. The code may assume these are power of two, so it is best
- * to keep them that size.
- * We don't need to allocate pages for the transmitter. We just use
- * the skbuffer directly.
- */
- #define FCC_ENET_RX_PAGES 16
- #define FCC_ENET_RX_FRSIZE 2048
- #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
- #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
- #define TX_RING_SIZE 16 /* Must be power of two */
- #define TX_RING_MOD_MASK 15 /* for this to work */
- /* The FCC stores dest/src/type, data, and checksum for receive packets.
- */
- #define PKT_MAXBUF_SIZE 1518
- #define PKT_MINBUF_SIZE 64
- /* Maximum input DMA size. Must be a should(?) be a multiple of 4.
- */
- #define PKT_MAXDMA_SIZE 1520
- /* Maximum input buffer size. Must be a multiple of 32.
- */
- #define PKT_MAXBLR_SIZE 1536
- static int fcc_enet_open(struct net_device *dev);
- static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
- static int fcc_enet_rx(struct net_device *dev);
- static void fcc_enet_mii(struct net_device *dev);
- static void fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
- static int fcc_enet_close(struct net_device *dev);
- static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
- static void set_multicast_list(struct net_device *dev);
- static void restart_fcc(struct net_device *dev);
- /* These will be configurable for the FCC choice.
- * Multiple ports can be configured. There is little choice among the
- * I/O pins to the PHY, except the clocks. We will need some board
- * dependent clock selection.
- * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
- * help show what pins are used for each device.
- */
- /* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
- * but there is little variation among the choices.
- */
- #define PA1_COL ((uint)0x00000001)
- #define PA1_CRS ((uint)0x00000002)
- #define PA1_TXER ((uint)0x00000004)
- #define PA1_TXEN ((uint)0x00000008)
- #define PA1_RXDV ((uint)0x00000010)
- #define PA1_RXER ((uint)0x00000020)
- #define PA1_TXDAT ((uint)0x00003c00)
- #define PA1_RXDAT ((uint)0x0003c000)
- #define PA1_PSORA0 (PA1_RXDAT | PA1_TXDAT)
- #define PA1_PSORA1 (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN |
- PA1_RXDV | PA1_RXER)
- #define PA1_DIRA0 (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
- #define PA1_DIRA1 (PA1_TXDAT | PA1_TXEN | PA1_TXER)
- /* CLK12 is receive, CLK11 is transmit. These are board specific.
- */
- #define PC_F1RXCLK ((uint)0x00000800)
- #define PC_F1TXCLK ((uint)0x00000400)
- #define CMX1_CLK_ROUTE ((uint)0x3e000000)
- #define CMX1_CLK_MASK ((uint)0xff000000)
- /* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
- * but there is little variation among the choices.
- */
- #define PB2_TXER ((uint)0x00000001)
- #define PB2_RXDV ((uint)0x00000002)
- #define PB2_TXEN ((uint)0x00000004)
- #define PB2_RXER ((uint)0x00000008)
- #define PB2_COL ((uint)0x00000010)
- #define PB2_CRS ((uint)0x00000020)
- #define PB2_TXDAT ((uint)0x000003c0)
- #define PB2_RXDAT ((uint)0x00003c00)
- #define PB2_PSORB0 (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL |
- PB2_RXER | PB2_RXDV | PB2_TXER)
- #define PB2_PSORB1 (PB2_TXEN)
- #define PB2_DIRB0 (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
- #define PB2_DIRB1 (PB2_TXDAT | PB2_TXEN | PB2_TXER)
- /* CLK13 is receive, CLK14 is transmit. These are board dependent.
- */
- #define PC_F2RXCLK ((uint)0x00001000)
- #define PC_F2TXCLK ((uint)0x00002000)
- #define CMX2_CLK_ROUTE ((uint)0x00250000)
- #define CMX2_CLK_MASK ((uint)0x00ff0000)
- /* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
- * but there is little variation among the choices.
- */
- #define PB3_RXDV ((uint)0x00004000)
- #define PB3_RXER ((uint)0x00008000)
- #define PB3_TXER ((uint)0x00010000)
- #define PB3_TXEN ((uint)0x00020000)
- #define PB3_COL ((uint)0x00040000)
- #define PB3_CRS ((uint)0x00080000)
- #define PB3_TXDAT ((uint)0x0f000000)
- #define PB3_RXDAT ((uint)0x00f00000)
- #define PB3_PSORB0 (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL |
- PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
- #define PB3_PSORB1 (0)
- #define PB3_DIRB0 (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
- #define PB3_DIRB1 (PB3_TXDAT | PB3_TXEN | PB3_TXER)
- /* CLK15 is receive, CLK16 is transmit. These are board dependent.
- */
- #define PC_F3RXCLK ((uint)0x00004000)
- #define PC_F3TXCLK ((uint)0x00008000)
- #define CMX3_CLK_ROUTE ((uint)0x00003700)
- #define CMX3_CLK_MASK ((uint)0x0000ff00)
- /* MII status/control serial interface.
- */
- #define PC_MDIO ((uint)0x00400000)
- #define PC_MDCK ((uint)0x00200000)
- /* A table of information for supporting FCCs. This does two things.
- * First, we know how many FCCs we have and they are always externally
- * numbered from zero. Second, it holds control register and I/O
- * information that could be different among board designs.
- */
- typedef struct fcc_info {
- uint fc_fccnum;
- uint fc_cpmblock;
- uint fc_cpmpage;
- uint fc_proff;
- uint fc_interrupt;
- uint fc_trxclocks;
- uint fc_clockroute;
- uint fc_clockmask;
- uint fc_mdio;
- uint fc_mdck;
- } fcc_info_t;
- static fcc_info_t fcc_ports[] = {
- #ifdef CONFIG_FCC1_ENET
- { 0, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
- (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
- PC_MDIO, PC_MDCK },
- #endif
- #ifdef CONFIG_FCC2_ENET
- { 1, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
- (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
- PC_MDIO, PC_MDCK },
- #endif
- #ifdef CONFIG_FCC3_ENET
- { 2, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
- (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
- PC_MDIO, PC_MDCK },
- #endif
- };
- /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
- * tx_bd_base always point to the base of the buffer descriptors. The
- * cur_rx and cur_tx point to the currently available buffer.
- * The dirty_tx tracks the current buffer that is being sent by the
- * controller. The cur_tx and dirty_tx are equal under both completely
- * empty and completely full conditions. The empty/ready indicator in
- * the buffer descriptor determines the actual condition.
- */
- struct fcc_enet_private {
- /* The saved address of a sent-in-place packet/buffer, for skfree(). */
- struct sk_buff* tx_skbuff[TX_RING_SIZE];
- ushort skb_cur;
- ushort skb_dirty;
- /* CPM dual port RAM relative addresses.
- */
- cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
- cbd_t *tx_bd_base;
- cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
- cbd_t *dirty_tx; /* The ring entries to be free()ed. */
- volatile fcc_t *fccp;
- volatile fcc_enet_t *ep;
- struct net_device_stats stats;
- uint tx_full;
- spinlock_t lock;
- uint phy_address;
- uint phy_type;
- uint phy_duplex;
- fcc_info_t *fip;
- };
- static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
- volatile immap_t *immap);
- static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
- static void init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
- volatile immap_t *immap);
- static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
- volatile immap_t *immap);
- /* MII processing. We keep this as simple as possible. Requests are
- * placed on the list (if there is room). When the request is finished
- * by the MII, an optional function may be called.
- */
- typedef struct mii_list {
- uint mii_regval;
- void (*mii_func)(uint val, struct net_device *dev);
- struct mii_list *mii_next;
- } mii_list_t;
- #define NMII 20
- mii_list_t mii_cmds[NMII];
- mii_list_t *mii_free;
- mii_list_t *mii_head;
- mii_list_t *mii_tail;
- static int phyaddr;
- static uint phytype;
- static int mii_queue(int request, void (*func)(uint, struct net_device *));
- static void mii_startup_cmds(void);
- static uint mii_send_receive(fcc_info_t *fip, uint cmd);
- /* Make MII read/write commands for the FCC.
- */
- #define mk_mii_phyaddr(ADDR) (0x60020000 | ((ADDR) << 23) | (2 << 18))
- #define mk_mii_read(REG) (0x60020000 | ((phyaddr << 23) |
- (REG & 0x1f) << 18))
- #define mk_mii_write(REG, VAL) (0x50020000 | ((phyaddr << 23) |
- (REG & 0x1f) << 18) |
- (VAL & 0xffff))
- static int
- fcc_enet_open(struct net_device *dev)
- {
- netif_start_queue(dev);
- return 0; /* Always succeed */
- }
- static int
- fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
- {
- struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
- volatile cbd_t *bdp;
- /* Fill in a Tx ring entry */
- bdp = cep->cur_tx;
- #ifndef final_version
- if (bdp->cbd_sc & BD_ENET_TX_READY) {
- /* Ooops. All transmit buffers are full. Bail out.
- * This should not happen, since cep->tx_full should be set.
- */
- printk("%s: tx queue full!.n", dev->name);
- return 1;
- }
- #endif
- /* Clear all of the status flags.
- */
- bdp->cbd_sc &= ~BD_ENET_TX_STATS;
- /* If the frame is short, tell CPM to pad it.
- */
- if (skb->len <= ETH_ZLEN)
- bdp->cbd_sc |= BD_ENET_TX_PAD;
- else
- bdp->cbd_sc &= ~BD_ENET_TX_PAD;
- /* Set buffer length and buffer pointer.
- */
- bdp->cbd_datlen = skb->len;
- bdp->cbd_bufaddr = __pa(skb->data);
- /* Save skb pointer.
- */
- cep->tx_skbuff[cep->skb_cur] = skb;
- cep->stats.tx_bytes += skb->len;
- cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
- spin_lock_irq(&cep->lock);
- /* Send it on its way. Tell CPM its ready, interrupt when done,
- * its the last BD of the frame, and to put the CRC on the end.
- */
- bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
- #if 0
- /* Errata says don't do this.
- */
- cep->fccp->fcc_ftodr = 0x8000;
- #endif
- dev->trans_start = jiffies;
- /* If this was the last BD in the ring, start at the beginning again.
- */
- if (bdp->cbd_sc & BD_ENET_TX_WRAP)
- bdp = cep->tx_bd_base;
- else
- bdp++;
- if (bdp->cbd_sc & BD_ENET_TX_READY) {
- netif_stop_queue(dev);
- cep->tx_full = 1;
- }
- cep->cur_tx = (cbd_t *)bdp;
- spin_unlock_irq(&cep->lock);
- return 0;
- }
- static void
- fcc_enet_timeout(struct net_device *dev)
- {
- struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
- printk("%s: transmit timed out.n", dev->name);
- cep->stats.tx_errors++;
- #ifndef final_version
- {
- int i;
- cbd_t *bdp;
- printk(" Ring data dump: cur_tx %p%s cur_rx %p.n",
- cep->cur_tx, cep->tx_full ? " (full)" : "",
- cep->cur_rx);
- bdp = cep->tx_bd_base;
- printk(" Tx @base %p :n", bdp);
- for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
- printk("%04x %04x %08xn",
- bdp->cbd_sc,
- bdp->cbd_datlen,
- bdp->cbd_bufaddr);
- bdp = cep->rx_bd_base;
- printk(" Rx @base %p :n", bdp);
- for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
- printk("%04x %04x %08xn",
- bdp->cbd_sc,
- bdp->cbd_datlen,
- bdp->cbd_bufaddr);
- }
- #endif
- if (!cep->tx_full)
- netif_wake_queue(dev);
- }
- /* The interrupt handler.
- */
- static void
- fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
- {
- struct net_device *dev = dev_id;
- volatile struct fcc_enet_private *cep;
- volatile cbd_t *bdp;
- ushort int_events;
- int must_restart;
- cep = (struct fcc_enet_private *)dev->priv;
- /* Get the interrupt events that caused us to be here.
- */
- int_events = cep->fccp->fcc_fcce;
- cep->fccp->fcc_fcce = int_events;
- must_restart = 0;
- /* Handle receive event in its own function.
- */
- if (int_events & FCC_ENET_RXF)
- fcc_enet_rx(dev_id);
- /* Check for a transmit error. The manual is a little unclear
- * about this, so the debug code until I get it figured out. It
- * appears that if TXE is set, then TXB is not set. However,
- * if carrier sense is lost during frame transmission, the TXE
- * bit is set, "and continues the buffer transmission normally."
- * I don't know if "normally" implies TXB is set when the buffer
- * descriptor is closed.....trial and error :-).
- */
- /* Transmit OK, or non-fatal error. Update the buffer descriptors.
- */
- if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
- spin_lock(&cep->lock);
- bdp = cep->dirty_tx;
- while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
- if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
- break;
- if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
- cep->stats.tx_heartbeat_errors++;
- if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
- cep->stats.tx_window_errors++;
- if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
- cep->stats.tx_aborted_errors++;
- if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
- cep->stats.tx_fifo_errors++;
- if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
- cep->stats.tx_carrier_errors++;
- /* No heartbeat or Lost carrier are not really bad errors.
- * The others require a restart transmit command.
- */
- if (bdp->cbd_sc &
- (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
- must_restart = 1;
- cep->stats.tx_errors++;
- }
- cep->stats.tx_packets++;
- /* Deferred means some collisions occurred during transmit,
- * but we eventually sent the packet OK.
- */
- if (bdp->cbd_sc & BD_ENET_TX_DEF)
- cep->stats.collisions++;
- /* Free the sk buffer associated with this last transmit.
- */
- dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
- cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
- /* Update pointer to next buffer descriptor to be transmitted.
- */
- if (bdp->cbd_sc & BD_ENET_TX_WRAP)
- bdp = cep->tx_bd_base;
- else
- bdp++;
- /* I don't know if we can be held off from processing these
- * interrupts for more than one frame time. I really hope
- * not. In such a case, we would now want to check the
- * currently available BD (cur_tx) and determine if any
- * buffers between the dirty_tx and cur_tx have also been
- * sent. We would want to process anything in between that
- * does not have BD_ENET_TX_READY set.
- */
- /* Since we have freed up a buffer, the ring is no longer
- * full.
- */
- if (cep->tx_full) {
- cep->tx_full = 0;
- if (netif_queue_stopped(dev)) {
- netif_wake_queue(dev);
- }
- }
- cep->dirty_tx = (cbd_t *)bdp;
- }
- if (must_restart) {
- volatile cpm8260_t *cp;
- /* Some transmit errors cause the transmitter to shut
- * down. We now issue a restart transmit. Since the
- * errors close the BD and update the pointers, the restart
- * _should_ pick up without having to reset any of our
- * pointers either.
- */
- cp = cpmp;
- cp->cp_cpcr =
- mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
- 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
- while (cp->cp_cpcr & CPM_CR_FLG);
- }
- spin_unlock(&cep->lock);
- }
- /* Check for receive busy, i.e. packets coming but no place to
- * put them.
- */
- if (int_events & FCC_ENET_BSY) {
- cep->stats.rx_dropped++;
- }
- return;
- }
- /* During a receive, the cur_rx points to the current incoming buffer.
- * When we update through the ring, if the next incoming buffer has
- * not been given to the system, we just set the empty indicator,
- * effectively tossing the packet.
- */
- static int
- fcc_enet_rx(struct net_device *dev)
- {
- struct fcc_enet_private *cep;
- volatile cbd_t *bdp;
- struct sk_buff *skb;
- ushort pkt_len;
- cep = (struct fcc_enet_private *)dev->priv;
- /* First, grab all of the stats for the incoming packet.
- * These get messed up if we get called due to a busy condition.
- */
- bdp = cep->cur_rx;
- for (;;) {
- if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
- break;
-
- #ifndef final_version
- /* Since we have allocated space to hold a complete frame, both
- * the first and last indicators should be set.
- */
- if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
- (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
- printk("CPM ENET: rcv is not first+lastn");
- #endif
- /* Frame too long or too short.
- */
- if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
- cep->stats.rx_length_errors++;
- if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
- cep->stats.rx_frame_errors++;
- if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
- cep->stats.rx_crc_errors++;
- if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
- cep->stats.rx_crc_errors++;
- /* Report late collisions as a frame error.
- * On this error, the BD is closed, but we don't know what we
- * have in the buffer. So, just drop this frame on the floor.
- */
- if (bdp->cbd_sc & BD_ENET_RX_CL) {
- cep->stats.rx_frame_errors++;
- }
- else {
- /* Process the incoming frame.
- */
- cep->stats.rx_packets++;
- pkt_len = bdp->cbd_datlen;
- cep->stats.rx_bytes += pkt_len;
- /* This does 16 byte alignment, much more than we need.
- * The packet length includes FCS, but we don't want to
- * include that when passing upstream as it messes up
- * bridging applications.
- */
- skb = dev_alloc_skb(pkt_len-4);
- if (skb == NULL) {
- printk("%s: Memory squeeze, dropping packet.n", dev->name);
- cep->stats.rx_dropped++;
- }
- else {
- skb->dev = dev;
- skb_put(skb,pkt_len-4); /* Make room */
- eth_copy_and_sum(skb,
- (unsigned char *)__va(bdp->cbd_bufaddr),
- pkt_len-4, 0);
- skb->protocol=eth_type_trans(skb,dev);
- netif_rx(skb);
- }
- }
- /* Clear the status flags for this buffer.
- */
- bdp->cbd_sc &= ~BD_ENET_RX_STATS;
- /* Mark the buffer empty.
- */
- bdp->cbd_sc |= BD_ENET_RX_EMPTY;
- /* Update BD pointer to next entry.
- */
- if (bdp->cbd_sc & BD_ENET_RX_WRAP)
- bdp = cep->rx_bd_base;
- else
- bdp++;
- }
- cep->cur_rx = (cbd_t *)bdp;
- return 0;
- }
- static int
- fcc_enet_close(struct net_device *dev)
- {
- /* Don't know what to do yet.
- */
- netif_stop_queue(dev);
- return 0;
- }
- static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
- {
- struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
- return &cep->stats;
- }
- /* The MII is simulated from the 8xx FEC implementation. The FCC
- * is not responsible for the MII control/status interface.
- */
- static void
- fcc_enet_mii(struct net_device *dev)
- {
- struct fcc_enet_private *fep;
- mii_list_t *mip;
- uint mii_reg;
- fep = (struct fcc_enet_private *)dev->priv;
- #if 0
- ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
- mii_reg = ep->fec_mii_data;
- #endif
-
- if ((mip = mii_head) == NULL) {
- printk("MII and no head!n");
- return;
- }
- if (mip->mii_func != NULL)
- (*(mip->mii_func))(mii_reg, dev);
- mii_head = mip->mii_next;
- mip->mii_next = mii_free;
- mii_free = mip;
- #if 0
- if ((mip = mii_head) != NULL)
- ep->fec_mii_data = mip->mii_regval;
- #endif
- }
- static int
- mii_queue(int regval, void (*func)(uint, struct net_device *))
- {
- unsigned long flags;
- mii_list_t *mip;
- int retval;
- retval = 0;
- save_flags(flags);
- cli();
- if ((mip = mii_free) != NULL) {
- mii_free = mip->mii_next;
- mip->mii_regval = regval;
- mip->mii_func = func;
- mip->mii_next = NULL;
- if (mii_head) {
- mii_tail->mii_next = mip;
- mii_tail = mip;
- }
- else {
- mii_head = mii_tail = mip;
- #if 0
- (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
- #endif
- }
- }
- else {
- retval = 1;
- }
- restore_flags(flags);
- return(retval);
- }
- static volatile uint full_duplex;
- static void
- mii_status(uint mii_reg, struct net_device *dev)
- {
- volatile uint prev_duplex;
- if (((mii_reg >> 18) & 0x1f) == 1) {
- /* status register.
- */
- printk("fec: ");
- if (mii_reg & 0x0004)
- printk("link up");
- else
- printk("link down");
- if (mii_reg & 0x0010)
- printk(",remote fault");
- if (mii_reg & 0x0020)
- printk(",auto complete");
- printk("n");
- }
- if (((mii_reg >> 18) & 0x1f) == 0x14) {
- /* Extended chip status register.
- */
- prev_duplex = full_duplex;
- printk("fec: ");
- if (mii_reg & 0x0800)
- printk("100 Mbps");
- else
- printk("10 Mbps");
- if (mii_reg & 0x1000) {
- printk(", Full-Duplexn");
- full_duplex = 1;
- }
- else {
- printk(", Half-Duplexn");
- full_duplex = 0;
- }
- #if 0
- if (prev_duplex != full_duplex)
- restart_fec(dev);
- #endif
- }
- if (((mii_reg >> 18) & 0x1f) == 31) {
- /* QS6612 PHY Control/Status.
- * OK, now we have it all, so figure out what is going on.
- */
- prev_duplex = full_duplex;
- printk("fec: ");
- mii_reg = (mii_reg >> 2) & 7;
- if (mii_reg & 1)
- printk("10 Mbps");
- else
- printk("100 Mbps");
- if (mii_reg > 4) {
- printk(", Full-Duplexn");
- full_duplex = 1;
- }
- else {
- printk(", Half-Duplexn");
- full_duplex = 0;
- }
- #if 0
- if (prev_duplex != full_duplex)
- restart_fec(dev);
- #endif
- }
- }
- static uint phyno;
- static void
- mii_discover_phy3(uint mii_reg, struct net_device *dev)
- {
- phytype <<= 16;
- phytype |= (mii_reg & 0xffff);
- printk("fec: Phy @ 0x%x, type 0x%08xn", phyno, phytype);
- mii_startup_cmds();
- }
- static void
- mii_discover_phy(uint mii_reg, struct net_device *dev)
- {
- if (phyno < 32) {
- if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
- phyaddr = phyno;
- mii_queue(mk_mii_read(3), mii_discover_phy3);
- }
- else {
- phyno++;
- mii_queue(mk_mii_phyaddr(phyno), mii_discover_phy);
- }
- }
- else {
- printk("FEC: No PHY device found.n");
- }
- }
- static void
- mii_discover_phy_poll(fcc_info_t *fip)
- {
- uint rv;
- int i;
- for (i=0; i<32; i++) {
- rv = mii_send_receive(fip, mk_mii_phyaddr(i));
- if ((phytype = (rv & 0xffff)) != 0xffff) {
- phyaddr = i;
- rv = mii_send_receive(fip, mk_mii_read(3));
- phytype <<= 16;
- phytype |= (rv & 0xffff);
- printk("fec: Phy @ 0x%x, type 0x%08xn", phyaddr, phytype);
- }
- }
- }
- static void
- mii_startup_cmds(void)
- {
- #if 1
- /* Level One PHY.
- */
- /* Read status registers to clear any pending interrupt.
- */
- mii_queue(mk_mii_read(1), mii_status);
- mii_queue(mk_mii_read(18), mii_status);
- /* Read extended chip status register.
- */
- mii_queue(mk_mii_read(0x14), mii_status);
- /* Set default operation of 100-TX....for some reason
- * some of these bits are set on power up, which is wrong.
- */
- mii_queue(mk_mii_write(0x13, 0), NULL);
- /* Enable Link status change interrupts.
- */
- mii_queue(mk_mii_write(0x11, 0x0002), NULL);
- /* Don't advertize Full duplex.
- mii_queue(mk_mii_write(0x04, 0x0021), NULL);
- */
- #endif
- }
- /* This supports the mii_link interrupt below.
- * We should get called three times. Once for register 1, once for
- * register 18, and once for register 20.
- */
- static uint mii_saved_reg1;
- static void
- mii_relink(uint mii_reg, struct net_device *dev)
- {
- volatile uint prev_duplex;
- unsigned long flags;
- if (((mii_reg >> 18) & 0x1f) == 1) {
- /* Just save the status register and get out.
- */
- mii_saved_reg1 = mii_reg;
- return;
- }
- if (((mii_reg >> 18) & 0x1f) == 18) {
- /* Not much here, but has to be read to clear the
- * interrupt condition.
- */
- if ((mii_reg & 0x8000) == 0)
- printk("fec: re-link and no IRQ?n");
- if ((mii_reg & 0x4000) == 0)
- printk("fec: no PHY power?n");
- }
- if (((mii_reg >> 18) & 0x1f) == 20) {
- /* Extended chip status register.
- * OK, now we have it all, so figure out what is going on.
- */
- prev_duplex = full_duplex;
- printk("fec: ");
- if (mii_saved_reg1 & 0x0004)
- printk("link up");
- else
- printk("link down");
- if (mii_saved_reg1 & 0x0010)
- printk(", remote fault");
- if (mii_saved_reg1 & 0x0020)
- printk(", auto complete");
- if (mii_reg & 0x0800)
- printk(", 100 Mbps");
- else
- printk(", 10 Mbps");
- if (mii_reg & 0x1000) {
- printk(", Full-Duplexn");
- full_duplex = 1;
- }
- else {
- printk(", Half-Duplexn");
- full_duplex = 0;
- }
- if (prev_duplex != full_duplex) {
- save_flags(flags);
- cli();
- #if 0
- restart_fec(dev);
- #endif
- restore_flags(flags);
- }
- }
- if (((mii_reg >> 18) & 0x1f) == 31) {
- /* QS6612 PHY Control/Status.
- * OK, now we have it all, so figure out what is going on.
- */
- prev_duplex = full_duplex;
- printk("fec: ");
- if (mii_saved_reg1 & 0x0004)
- printk("link up");
- else
- printk("link down");
- if (mii_saved_reg1 & 0x0010)
- printk(", remote fault");
- if (mii_saved_reg1 & 0x0020)
- printk(", auto complete");
- mii_reg = (mii_reg >> 2) & 7;
- if (mii_reg & 1)
- printk(", 10 Mbps");
- else
- printk(", 100 Mbps");
- if (mii_reg > 4) {
- printk(", Full-Duplexn");
- full_duplex = 1;
- }
- else {
- printk(", Half-Duplexn");
- full_duplex = 0;
- }
- #if 0
- if (prev_duplex != full_duplex) {
- save_flags(flags);
- cli();
- restart_fec(dev);
- restore_flags(flags);
- }
- #endif
- }
- }
- /* Set or clear the multicast filter for this adaptor.
- * Skeleton taken from sunlance driver.
- * The CPM Ethernet implementation allows Multicast as well as individual
- * MAC address filtering. Some of the drivers check to make sure it is
- * a group multicast address, and discard those that are not. I guess I
- * will do the same for now, but just remove the test if you want
- * individual filtering as well (do the upper net layers want or support
- * this kind of feature?).
- */
- static void
- set_multicast_list(struct net_device *dev)
- {
- struct fcc_enet_private *cep;
- struct dev_mc_list *dmi;
- u_char *mcptr, *tdptr;
- volatile fcc_enet_t *ep;
- int i, j;
- cep = (struct fcc_enet_private *)dev->priv;
- return;
- /* Get pointer to FCC area in parameter RAM.
- */
- ep = (fcc_enet_t *)dev->base_addr;
- if (dev->flags&IFF_PROMISC) {
-
- /* Log any net taps. */
- printk("%s: Promiscuous mode enabled.n", dev->name);
- cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
- } else {
- cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
- if (dev->flags & IFF_ALLMULTI) {
- /* Catch all multicast addresses, so set the
- * filter to all 1's.
- */
- ep->fen_gaddrh = 0xffffffff;
- ep->fen_gaddrl = 0xffffffff;
- }
- else {
- /* Clear filter and add the addresses in the list.
- */
- ep->fen_gaddrh = 0;
- ep->fen_gaddrl = 0;
- dmi = dev->mc_list;
- for (i=0; i<dev->mc_count; i++) {
-
- /* Only support group multicast for now.
- */
- if (!(dmi->dmi_addr[0] & 1))
- continue;
- /* The address in dmi_addr is LSB first,
- * and taddr is MSB first. We have to
- * copy bytes MSB first from dmi_addr.
- */
- mcptr = (u_char *)dmi->dmi_addr + 5;
- tdptr = (u_char *)&ep->fen_taddrh;
- for (j=0; j<6; j++)
- *tdptr++ = *mcptr--;
- /* Ask CPM to run CRC and set bit in
- * filter mask.
- */
- cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
- cep->fip->fc_cpmblock, 0x0c,
- CPM_CR_SET_GADDR) | CPM_CR_FLG;
- udelay(10);
- while (cpmp->cp_cpcr & CPM_CR_FLG);
- }
- }
- }
- }
- /* Initialize the CPM Ethernet on FCC.
- */
- int __init fec_enet_init(void)
- {
- struct net_device *dev;
- struct fcc_enet_private *cep;
- fcc_info_t *fip;
- int i, np;
- volatile immap_t *immap;
- volatile iop8260_t *io;
- immap = (immap_t *)IMAP_ADDR; /* and to internal registers */
- io = &immap->im_ioport;
- np = sizeof(fcc_ports) / sizeof(fcc_info_t);
- fip = fcc_ports;
- while (np-- > 0) {
- /* Allocate some private information.
- */
- cep = (struct fcc_enet_private *)
- kmalloc(sizeof(*cep), GFP_KERNEL);
- if (cep == NULL)
- return -ENOMEM;
- __clear_user(cep,sizeof(*cep));
- spin_lock_init(&cep->lock);
- cep->fip = fip;
- /* Create an Ethernet device instance.
- */
- dev = init_etherdev(0, 0);
- dev->priv = cep;
- init_fcc_shutdown(fip, cep, immap);
- init_fcc_ioports(fip, io, immap);
- init_fcc_param(fip, dev, immap);
- dev->base_addr = (unsigned long)(cep->ep);
- /* The CPM Ethernet specific entries in the device
- * structure.
- */
- dev->open = fcc_enet_open;
- dev->hard_start_xmit = fcc_enet_start_xmit;
- dev->tx_timeout = fcc_enet_timeout;
- dev->watchdog_timeo = TX_TIMEOUT;
- dev->stop = fcc_enet_close;
- dev->get_stats = fcc_enet_get_stats;
- dev->set_multicast_list = set_multicast_list;
- init_fcc_startup(fip, dev);
- printk("%s: FCC ENET Version 0.2, ", dev->name);
- for (i=0; i<5; i++)
- printk("%02x:", dev->dev_addr[i]);
- printk("%02xn", dev->dev_addr[5]);
- /* This is just a hack for now that works only on the EST
- * board, or anything else that has MDIO/CK configured.
- * It is mainly to test the MII software clocking.
- */
- mii_discover_phy_poll(fip);
- fip++;
- }
- return 0;
- }
- /* Make sure the device is shut down during initialization.
- */
- static void __init
- init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
- volatile immap_t *immap)
- {
- volatile fcc_enet_t *ep;
- volatile fcc_t *fccp;
- /* Get pointer to FCC area in parameter RAM.
- */
- ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
- /* And another to the FCC register area.
- */
- fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
- cep->fccp = fccp; /* Keep the pointers handy */
- cep->ep = ep;
- /* Disable receive and transmit in case someone left it running.
- */
- fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
- }
- /* Initialize the I/O pins for the FCC Ethernet.
- */
- static void __init
- init_fcc_ioports(fcc_info_t *fip, volatile iop8260_t *io,
- volatile immap_t *immap)
- {
- /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
- */
- if (fip->fc_proff == PROFF_FCC1) {
- /* Configure port A and C pins for FCC1 Ethernet.
- */
- io->iop_pdira &= ~PA1_DIRA0;
- io->iop_pdira |= PA1_DIRA1;
- io->iop_psora &= ~PA1_PSORA0;
- io->iop_psora |= PA1_PSORA1;
- io->iop_ppara |= (PA1_DIRA0 | PA1_DIRA1);
- }
- if (fip->fc_proff == PROFF_FCC2) {
- /* Configure port B and C pins for FCC Ethernet.
- */
- io->iop_pdirb &= ~PB2_DIRB0;
- io->iop_pdirb |= PB2_DIRB1;
- io->iop_psorb &= ~PB2_PSORB0;
- io->iop_psorb |= PB2_PSORB1;
- io->iop_pparb |= (PB2_DIRB0 | PB2_DIRB1);
- }
- if (fip->fc_proff == PROFF_FCC3) {
- /* Configure port B and C pins for FCC Ethernet.
- */
- io->iop_pdirb &= ~PB3_DIRB0;
- io->iop_pdirb |= PB3_DIRB1;
- io->iop_psorb &= ~PB3_PSORB0;
- io->iop_psorb |= PB3_PSORB1;
- io->iop_pparb |= (PB3_DIRB0 | PB3_DIRB1);
- }
- /* Port C has clocks......
- */
- io->iop_psorc &= ~(fip->fc_trxclocks);
- io->iop_pdirc &= ~(fip->fc_trxclocks);
- io->iop_pparc |= fip->fc_trxclocks;
- /* ....and the MII serial clock/data.
- */
- io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
- io->iop_podrc |= fip->fc_mdio;
- io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
- io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
- /* Configure Serial Interface clock routing.
- * First, clear all FCC bits to zero,
- * then set the ones we want.
- */
- immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
- immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
- }
- static void __init
- init_fcc_param(fcc_info_t *fip, struct net_device *dev,
- volatile immap_t *immap)
- {
- unsigned char *eap;
- unsigned long mem_addr;
- bd_t *bd;
- int i, j;
- struct fcc_enet_private *cep;
- volatile fcc_enet_t *ep;
- volatile cbd_t *bdp;
- volatile cpm8260_t *cp;
- cep = (struct fcc_enet_private *)(dev->priv);
- ep = cep->ep;
- cp = cpmp;
- bd = (bd_t *)__res;
- /* Zero the whole thing.....I must have missed some individually.
- * It works when I do this.
- */
- memset((char *)ep, 0, sizeof(fcc_enet_t));
- /* Allocate space for the buffer descriptors in the DP ram.
- * These are relative offsets in the DP ram address space.
- * Initialize base addresses for the buffer descriptors.
- */
- #if 0
- /* I really want to do this, but for some reason it doesn't
- * work with the data cache enabled, so I allocate from the
- * main memory instead.
- */
- i = m8260_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
- ep->fen_genfcc.fcc_rbase = (uint)&immap->im_dprambase[i];
- cep->rx_bd_base = (cbd_t *)&immap->im_dprambase[i];
- i = m8260_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
- ep->fen_genfcc.fcc_tbase = (uint)&immap->im_dprambase[i];
- cep->tx_bd_base = (cbd_t *)&immap->im_dprambase[i];
- #else
- cep->rx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
- ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
- cep->tx_bd_base = (cbd_t *)m8260_cpm_hostalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
- ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
- #endif
- cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
- cep->cur_rx = cep->rx_bd_base;
- ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
- ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
- /* Set maximum bytes per receive buffer.
- * It must be a multiple of 32.
- */
- ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
- /* Allocate space in the reserved FCC area of DPRAM for the
- * internal buffers. No one uses this space (yet), so we
- * can do this. Later, we will add resource management for
- * this area.
- */
- mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
- ep->fen_genfcc.fcc_riptr = mem_addr;
- ep->fen_genfcc.fcc_tiptr = mem_addr+32;
- ep->fen_padptr = mem_addr+64;
- memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
-
- ep->fen_genfcc.fcc_rbptr = 0;
- ep->fen_genfcc.fcc_tbptr = 0;
- ep->fen_genfcc.fcc_rcrc = 0;
- ep->fen_genfcc.fcc_tcrc = 0;
- ep->fen_genfcc.fcc_res1 = 0;
- ep->fen_genfcc.fcc_res2 = 0;
- ep->fen_camptr = 0; /* CAM isn't used in this driver */
- /* Set CRC preset and mask.
- */
- ep->fen_cmask = 0xdebb20e3;
- ep->fen_cpres = 0xffffffff;
- ep->fen_crcec = 0; /* CRC Error counter */
- ep->fen_alec = 0; /* alignment error counter */
- ep->fen_disfc = 0; /* discard frame counter */
- ep->fen_retlim = 15; /* Retry limit threshold */
- ep->fen_pper = 0; /* Normal persistence */
- /* Clear hash filter tables.
- */
- ep->fen_gaddrh = 0;
- ep->fen_gaddrl = 0;
- ep->fen_iaddrh = 0;
- ep->fen_iaddrl = 0;
- /* Clear the Out-of-sequence TxBD.
- */
- ep->fen_tfcstat = 0;
- ep->fen_tfclen = 0;
- ep->fen_tfcptr = 0;
- ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
- ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
- /* Set Ethernet station address.
- *
- * This is supplied in the board information structure, so we
- * copy that into the controller.
- * So, far we have only been given one Ethernet address. We make
- * it unique by setting a few bits in the upper byte of the
- * non-static part of the address.
- */
- eap = (unsigned char *)&(ep->fen_paddrh);
- for (i=5; i>=0; i--) {
- if (i == 3) {
- dev->dev_addr[i] = bd->bi_enetaddr[i];
- dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
- *eap++ = dev->dev_addr[i];
- }
- else {
- *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
- }
- }
- ep->fen_taddrh = 0;
- ep->fen_taddrm = 0;
- ep->fen_taddrl = 0;
- ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
- ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
- /* Clear stat counters, in case we ever enable RMON.
- */
- ep->fen_octc = 0;
- ep->fen_colc = 0;
- ep->fen_broc = 0;
- ep->fen_mulc = 0;
- ep->fen_uspc = 0;
- ep->fen_frgc = 0;
- ep->fen_ospc = 0;
- ep->fen_jbrc = 0;
- ep->fen_p64c = 0;
- ep->fen_p65c = 0;
- ep->fen_p128c = 0;
- ep->fen_p256c = 0;
- ep->fen_p512c = 0;
- ep->fen_p1024c = 0;
- ep->fen_rfthr = 0; /* Suggested by manual */
- ep->fen_rfcnt = 0;
- ep->fen_cftype = 0;
- /* Now allocate the host memory pages and initialize the
- * buffer descriptors.
- */
- bdp = cep->tx_bd_base;
- for (i=0; i<TX_RING_SIZE; i++) {
- /* Initialize the BD for every fragment in the page.
- */
- bdp->cbd_sc = 0;
- bdp->cbd_datlen = 0;
- bdp->cbd_bufaddr = 0;
- bdp++;
- }
- /* Set the last buffer to wrap.
- */
- bdp--;
- bdp->cbd_sc |= BD_SC_WRAP;
- bdp = cep->rx_bd_base;
- for (i=0; i<FCC_ENET_RX_PAGES; i++) {
- /* Allocate a page.
- */
- mem_addr = __get_free_page(GFP_KERNEL);
- /* Initialize the BD for every fragment in the page.
- */
- for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
- bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
- bdp->cbd_datlen = 0;
- bdp->cbd_bufaddr = __pa(mem_addr);
- mem_addr += FCC_ENET_RX_FRSIZE;
- bdp++;
- }
- }
- /* Set the last buffer to wrap.
- */
- bdp--;
- bdp->cbd_sc |= BD_SC_WRAP;
- /* Let's re-initialize the channel now. We have to do it later
- * than the manual describes because we have just now finished
- * the BD initialization.
- */
- cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
- CPM_CR_INIT_TRX) | CPM_CR_FLG;
- while (cp->cp_cpcr & CPM_CR_FLG);
- cep->skb_cur = cep->skb_dirty = 0;
- }
- /* Let 'er rip.
- */
- static void __init
- init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
- {
- volatile fcc_t *fccp;
- struct fcc_enet_private *cep;
- cep = (struct fcc_enet_private *)(dev->priv);
- fccp = cep->fccp;
- fccp->fcc_fcce = 0xffff; /* Clear any pending events */
- /* Enable interrupts for transmit error, complete frame
- * received, and any transmit buffer we have also set the
- * interrupt flag.
- */
- fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
- /* Install our interrupt handler.
- */
- if (request_8xxirq(fip->fc_interrupt, fcc_enet_interrupt, 0,
- "fenet", dev) < 0)
- printk("Can't get FCC IRQ %dn", fip->fc_interrupt);
- /* Set GFMR to enable Ethernet operating mode.
- */
- fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
- /* Set sync/delimiters.
- */
- fccp->fcc_fdsr = 0xd555;
- /* Set protocol specific processing mode for Ethernet.
- * This has to be adjusted for Full Duplex operation after we can
- * determine how to detect that.
- */
- fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
- /* And last, enable the transmit and receive processing.
- */
- fccp->fcc_gfmr |= (FCC_GFMR_ENR | FCC_GFMR_ENT);
- }
- /* MII command/status interface.
- * I'm not going to describe all of the details. You can find the
- * protocol definition in many other places, including the data sheet
- * of most PHY parts.
- * I wonder what "they" were thinking (maybe weren't) when they leave
- * the I2C in the CPM but I have to toggle these bits......
- */
- static uint
- mii_send_receive(fcc_info_t *fip, uint cmd)
- {
- unsigned long flags;
- uint retval;
- int read_op, i;
- volatile immap_t *immap;
- volatile iop8260_t *io;
- immap = (immap_t *)IMAP_ADDR;
- io = &immap->im_ioport;
- /* When we get here, both clock and data are high, outputs.
- * Output is open drain.
- * Data transitions on high->low clock, is valid on low->high clock.
- * Spec says edge transitions no closer than 160 nSec, minimum clock
- * cycle 400 nSec. I could only manage about 500 nSec edges with
- * an XOR loop, so I won't worry about delays yet.
- * I disable interrupts during bit flipping to ensure atomic
- * updates of the registers. I do lots of interrupt disable/enable
- * to ensure we don't hang out too long with interrupts disabled.
- */
-
- /* First, crank out 32 1-bits as preamble.
- * This is 64 transitions to clock the bits, with clock/data
- * left high.
- */
- save_flags(flags);
- cli();
- for (i=0; i<64; i++) {
- io->iop_pdatc ^= fip->fc_mdck;
- udelay(0);
- }
- restore_flags(flags);
- read_op = ((cmd & 0xf0000000) == 0x60000000);
- /* We return the command word on a write op, or the command portion
- * plus the new data on a read op. This is what the 8xx FEC does,
- * and it allows the functions to simply look at the returned value
- * and know the PHY/register as well.
- */
- if (read_op)
- retval = cmd;
- else
- retval = (cmd >> 16);
- /* Clock out the first 16 MS bits of the command.
- */
- save_flags(flags);
- cli();
- for (i=0; i<16; i++) {
- io->iop_pdatc &= ~(fip->fc_mdck);
- if (cmd & 0x80000000)
- io->iop_pdatc |= fip->fc_mdio;
- else
- io->iop_pdatc &= ~(fip->fc_mdio);
- cmd <<= 1;
- io->iop_pdatc |= fip->fc_mdck;
- udelay(0);
- }
- /* Do the turn-around. If read op, we make the IO and input.
- * If write op, do the 1/0 thing.
- */
- io->iop_pdatc &= ~(fip->fc_mdck);
- if (read_op)
- io->iop_pdirc &= ~(fip->fc_mdio);
- else
- io->iop_pdatc |= fip->fc_mdio;
- io->iop_pdatc |= fip->fc_mdck;
- /* I do this mainly to get just a little delay.
- */
- restore_flags(flags);
- save_flags(flags);
- cli();
- io->iop_pdatc &= ~(fip->fc_mdck);
- io->iop_pdirc &= ~(fip->fc_mdio);
- io->iop_pdatc |= fip->fc_mdck;
- restore_flags(flags);
- save_flags(flags);
- cli();
- /* For read, clock in 16 bits. For write, clock out
- * rest of command.
- */
- if (read_op) {
- io->iop_pdatc &= ~(fip->fc_mdck);
- udelay(0);
- for (i=0; i<16; i++) {
- io->iop_pdatc |= fip->fc_mdck;
- udelay(0);
- retval <<= 1;
- if (io->iop_pdatc & fip->fc_mdio)
- retval |= 1;
- io->iop_pdatc &= ~(fip->fc_mdck);
- udelay(0);
- }
- }
- else {
- for (i=0; i<16; i++) {
- io->iop_pdatc &= ~(fip->fc_mdck);
- if (cmd & 0x80000000)
- io->iop_pdatc |= fip->fc_mdio;
- else
- io->iop_pdatc &= ~(fip->fc_mdio);
- cmd <<= 1;
- io->iop_pdatc |= fip->fc_mdck;
- udelay(0);
- }
- io->iop_pdatc &= ~(fip->fc_mdck);
- }
- restore_flags(flags);
- /* Some diagrams show two 1 bits for "idle". I don't know if
- * this is really necessary or if it was just to indicate nothing
- * is going to happen for a while.
- * Make the data pin an output, set the data high, and clock it.
- */
- save_flags(flags);
- cli();
- io->iop_pdatc |= fip->fc_mdio;
- io->iop_pdirc |= fip->fc_mdio;
- for (i=0; i<3; i++)
- io->iop_pdatc ^= fip->fc_mdck;
- restore_flags(flags);
- /* We exit with the same conditions as entry.
- */
- return(retval);
- }