sched.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:32k
- /*
- * linux/kernel/sched.c
- *
- * Kernel scheduler and related syscalls
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- *
- * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
- * make semaphores SMP safe
- * 1998-11-19 Implemented schedule_timeout() and related stuff
- * by Andrea Arcangeli
- * 1998-12-28 Implemented better SMP scheduling by Ingo Molnar
- */
- /*
- * 'sched.c' is the main kernel file. It contains scheduling primitives
- * (sleep_on, wakeup, schedule etc) as well as a number of simple system
- * call functions (type getpid()), which just extract a field from
- * current-task
- */
- #include <linux/config.h>
- #include <linux/mm.h>
- #include <linux/init.h>
- #include <linux/smp_lock.h>
- #include <linux/nmi.h>
- #include <linux/interrupt.h>
- #include <linux/kernel_stat.h>
- #include <linux/completion.h>
- #include <linux/prefetch.h>
- #include <linux/compiler.h>
- #include <asm/uaccess.h>
- #include <asm/mmu_context.h>
- extern void timer_bh(void);
- extern void tqueue_bh(void);
- extern void immediate_bh(void);
- /*
- * scheduler variables
- */
- unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
- extern void mem_use(void);
- /*
- * Scheduling quanta.
- *
- * NOTE! The unix "nice" value influences how long a process
- * gets. The nice value ranges from -20 to +19, where a -20
- * is a "high-priority" task, and a "+10" is a low-priority
- * task.
- *
- * We want the time-slice to be around 50ms or so, so this
- * calculation depends on the value of HZ.
- */
- #if HZ < 200
- #define TICK_SCALE(x) ((x) >> 2)
- #elif HZ < 400
- #define TICK_SCALE(x) ((x) >> 1)
- #elif HZ < 800
- #define TICK_SCALE(x) (x)
- #elif HZ < 1600
- #define TICK_SCALE(x) ((x) << 1)
- #else
- #define TICK_SCALE(x) ((x) << 2)
- #endif
- #define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)
- /*
- * Init task must be ok at boot for the ix86 as we will check its signals
- * via the SMP irq return path.
- */
-
- struct task_struct * init_tasks[NR_CPUS] = {&init_task, };
- /*
- * The tasklist_lock protects the linked list of processes.
- *
- * The runqueue_lock locks the parts that actually access
- * and change the run-queues, and have to be interrupt-safe.
- *
- * If both locks are to be concurrently held, the runqueue_lock
- * nests inside the tasklist_lock.
- *
- * task->alloc_lock nests inside tasklist_lock.
- */
- spinlock_t runqueue_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; /* inner */
- rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* outer */
- static LIST_HEAD(runqueue_head);
- /*
- * We align per-CPU scheduling data on cacheline boundaries,
- * to prevent cacheline ping-pong.
- */
- static union {
- struct schedule_data {
- struct task_struct * curr;
- cycles_t last_schedule;
- } schedule_data;
- char __pad [SMP_CACHE_BYTES];
- } aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};
- #define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr
- #define last_schedule(cpu) aligned_data[(cpu)].schedule_data.last_schedule
- struct kernel_stat kstat;
- extern struct task_struct *child_reaper;
- #ifdef CONFIG_SMP
- #define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])
- #define can_schedule(p,cpu)
- ((p)->cpus_runnable & (p)->cpus_allowed & (1 << cpu))
- #else
- #define idle_task(cpu) (&init_task)
- #define can_schedule(p,cpu) (1)
- #endif
- void scheduling_functions_start_here(void) { }
- /*
- * This is the function that decides how desirable a process is..
- * You can weigh different processes against each other depending
- * on what CPU they've run on lately etc to try to handle cache
- * and TLB miss penalties.
- *
- * Return values:
- * -1000: never select this
- * 0: out of time, recalculate counters (but it might still be
- * selected)
- * +ve: "goodness" value (the larger, the better)
- * +1000: realtime process, select this.
- */
- static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
- {
- int weight;
- /*
- * select the current process after every other
- * runnable process, but before the idle thread.
- * Also, dont trigger a counter recalculation.
- */
- weight = -1;
- if (p->policy & SCHED_YIELD)
- goto out;
- /*
- * Non-RT process - normal case first.
- */
- if (p->policy == SCHED_OTHER) {
- /*
- * Give the process a first-approximation goodness value
- * according to the number of clock-ticks it has left.
- *
- * Don't do any other calculations if the time slice is
- * over..
- */
- weight = p->counter;
- if (!weight)
- goto out;
-
- #ifdef CONFIG_SMP
- /* Give a largish advantage to the same processor... */
- /* (this is equivalent to penalizing other processors) */
- if (p->processor == this_cpu)
- weight += PROC_CHANGE_PENALTY;
- #endif
- /* .. and a slight advantage to the current MM */
- if (p->mm == this_mm || !p->mm)
- weight += 1;
- weight += 20 - p->nice;
- goto out;
- }
- /*
- * Realtime process, select the first one on the
- * runqueue (taking priorities within processes
- * into account).
- */
- weight = 1000 + p->rt_priority;
- out:
- return weight;
- }
- /*
- * the 'goodness value' of replacing a process on a given CPU.
- * positive value means 'replace', zero or negative means 'dont'.
- */
- static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
- {
- return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);
- }
- /*
- * This is ugly, but reschedule_idle() is very timing-critical.
- * We are called with the runqueue spinlock held and we must
- * not claim the tasklist_lock.
- */
- static FASTCALL(void reschedule_idle(struct task_struct * p));
- static void reschedule_idle(struct task_struct * p)
- {
- #ifdef CONFIG_SMP
- int this_cpu = smp_processor_id();
- struct task_struct *tsk, *target_tsk;
- int cpu, best_cpu, i, max_prio;
- cycles_t oldest_idle;
- /*
- * shortcut if the woken up task's last CPU is
- * idle now.
- */
- best_cpu = p->processor;
- if (can_schedule(p, best_cpu)) {
- tsk = idle_task(best_cpu);
- if (cpu_curr(best_cpu) == tsk) {
- int need_resched;
- send_now_idle:
- /*
- * If need_resched == -1 then we can skip sending
- * the IPI altogether, tsk->need_resched is
- * actively watched by the idle thread.
- */
- need_resched = tsk->need_resched;
- tsk->need_resched = 1;
- if ((best_cpu != this_cpu) && !need_resched)
- smp_send_reschedule(best_cpu);
- return;
- }
- }
- /*
- * We know that the preferred CPU has a cache-affine current
- * process, lets try to find a new idle CPU for the woken-up
- * process. Select the least recently active idle CPU. (that
- * one will have the least active cache context.) Also find
- * the executing process which has the least priority.
- */
- oldest_idle = (cycles_t) -1;
- target_tsk = NULL;
- max_prio = 0;
- for (i = 0; i < smp_num_cpus; i++) {
- cpu = cpu_logical_map(i);
- if (!can_schedule(p, cpu))
- continue;
- tsk = cpu_curr(cpu);
- /*
- * We use the first available idle CPU. This creates
- * a priority list between idle CPUs, but this is not
- * a problem.
- */
- if (tsk == idle_task(cpu)) {
- #if defined(__i386__) && defined(CONFIG_SMP)
- /*
- * Check if two siblings are idle in the same
- * physical package. Use them if found.
- */
- if (smp_num_siblings == 2) {
- if (cpu_curr(cpu_sibling_map[cpu]) ==
- idle_task(cpu_sibling_map[cpu])) {
- oldest_idle = last_schedule(cpu);
- target_tsk = tsk;
- break;
- }
-
- }
- #endif
- if (last_schedule(cpu) < oldest_idle) {
- oldest_idle = last_schedule(cpu);
- target_tsk = tsk;
- }
- } else {
- if (oldest_idle == -1ULL) {
- int prio = preemption_goodness(tsk, p, cpu);
- if (prio > max_prio) {
- max_prio = prio;
- target_tsk = tsk;
- }
- }
- }
- }
- tsk = target_tsk;
- if (tsk) {
- if (oldest_idle != -1ULL) {
- best_cpu = tsk->processor;
- goto send_now_idle;
- }
- tsk->need_resched = 1;
- if (tsk->processor != this_cpu)
- smp_send_reschedule(tsk->processor);
- }
- return;
-
- #else /* UP */
- int this_cpu = smp_processor_id();
- struct task_struct *tsk;
- tsk = cpu_curr(this_cpu);
- if (preemption_goodness(tsk, p, this_cpu) > 0)
- tsk->need_resched = 1;
- #endif
- }
- /*
- * Careful!
- *
- * This has to add the process to the _end_ of the
- * run-queue, not the beginning. The goodness value will
- * determine whether this process will run next. This is
- * important to get SCHED_FIFO and SCHED_RR right, where
- * a process that is either pre-empted or its time slice
- * has expired, should be moved to the tail of the run
- * queue for its priority - Bhavesh Davda
- */
- static inline void add_to_runqueue(struct task_struct * p)
- {
- list_add_tail(&p->run_list, &runqueue_head);
- nr_running++;
- }
- static inline void move_last_runqueue(struct task_struct * p)
- {
- list_del(&p->run_list);
- list_add_tail(&p->run_list, &runqueue_head);
- }
- /*
- * Wake up a process. Put it on the run-queue if it's not
- * already there. The "current" process is always on the
- * run-queue (except when the actual re-schedule is in
- * progress), and as such you're allowed to do the simpler
- * "current->state = TASK_RUNNING" to mark yourself runnable
- * without the overhead of this.
- */
- static inline int try_to_wake_up(struct task_struct * p, int synchronous)
- {
- unsigned long flags;
- int success = 0;
- /*
- * We want the common case fall through straight, thus the goto.
- */
- spin_lock_irqsave(&runqueue_lock, flags);
- p->state = TASK_RUNNING;
- if (task_on_runqueue(p))
- goto out;
- add_to_runqueue(p);
- if (!synchronous || !(p->cpus_allowed & (1 << smp_processor_id())))
- reschedule_idle(p);
- success = 1;
- out:
- spin_unlock_irqrestore(&runqueue_lock, flags);
- return success;
- }
- inline int wake_up_process(struct task_struct * p)
- {
- return try_to_wake_up(p, 0);
- }
- static void process_timeout(unsigned long __data)
- {
- struct task_struct * p = (struct task_struct *) __data;
- wake_up_process(p);
- }
- /**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns. The routine will return 0
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task. In this case the remaining time
- * in jiffies will be returned, or 0 if the timer expired in time
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * In all cases the return value is guaranteed to be non-negative.
- */
- signed long schedule_timeout(signed long timeout)
- {
- struct timer_list timer;
- unsigned long expire;
- switch (timeout)
- {
- case MAX_SCHEDULE_TIMEOUT:
- /*
- * These two special cases are useful to be comfortable
- * in the caller. Nothing more. We could take
- * MAX_SCHEDULE_TIMEOUT from one of the negative value
- * but I' d like to return a valid offset (>=0) to allow
- * the caller to do everything it want with the retval.
- */
- schedule();
- goto out;
- default:
- /*
- * Another bit of PARANOID. Note that the retval will be
- * 0 since no piece of kernel is supposed to do a check
- * for a negative retval of schedule_timeout() (since it
- * should never happens anyway). You just have the printk()
- * that will tell you if something is gone wrong and where.
- */
- if (timeout < 0)
- {
- printk(KERN_ERR "schedule_timeout: wrong timeout "
- "value %lx from %pn", timeout,
- __builtin_return_address(0));
- current->state = TASK_RUNNING;
- goto out;
- }
- }
- expire = timeout + jiffies;
- init_timer(&timer);
- timer.expires = expire;
- timer.data = (unsigned long) current;
- timer.function = process_timeout;
- add_timer(&timer);
- schedule();
- del_timer_sync(&timer);
- timeout = expire - jiffies;
- out:
- return timeout < 0 ? 0 : timeout;
- }
- /*
- * schedule_tail() is getting called from the fork return path. This
- * cleans up all remaining scheduler things, without impacting the
- * common case.
- */
- static inline void __schedule_tail(struct task_struct *prev)
- {
- #ifdef CONFIG_SMP
- int policy;
- /*
- * prev->policy can be written from here only before `prev'
- * can be scheduled (before setting prev->cpus_runnable to ~0UL).
- * Of course it must also be read before allowing prev
- * to be rescheduled, but since the write depends on the read
- * to complete, wmb() is enough. (the spin_lock() acquired
- * before setting cpus_runnable is not enough because the spin_lock()
- * common code semantics allows code outside the critical section
- * to enter inside the critical section)
- */
- policy = prev->policy;
- prev->policy = policy & ~SCHED_YIELD;
- wmb();
- /*
- * fast path falls through. We have to clear cpus_runnable before
- * checking prev->state to avoid a wakeup race. Protect against
- * the task exiting early.
- */
- task_lock(prev);
- task_release_cpu(prev);
- mb();
- if (prev->state == TASK_RUNNING)
- goto needs_resched;
- out_unlock:
- task_unlock(prev); /* Synchronise here with release_task() if prev is TASK_ZOMBIE */
- return;
- /*
- * Slow path - we 'push' the previous process and
- * reschedule_idle() will attempt to find a new
- * processor for it. (but it might preempt the
- * current process as well.) We must take the runqueue
- * lock and re-check prev->state to be correct. It might
- * still happen that this process has a preemption
- * 'in progress' already - but this is not a problem and
- * might happen in other circumstances as well.
- */
- needs_resched:
- {
- unsigned long flags;
- /*
- * Avoid taking the runqueue lock in cases where
- * no preemption-check is necessery:
- */
- if ((prev == idle_task(smp_processor_id())) ||
- (policy & SCHED_YIELD))
- goto out_unlock;
- spin_lock_irqsave(&runqueue_lock, flags);
- if ((prev->state == TASK_RUNNING) && !task_has_cpu(prev))
- reschedule_idle(prev);
- spin_unlock_irqrestore(&runqueue_lock, flags);
- goto out_unlock;
- }
- #else
- prev->policy &= ~SCHED_YIELD;
- #endif /* CONFIG_SMP */
- }
- asmlinkage void schedule_tail(struct task_struct *prev)
- {
- __schedule_tail(prev);
- }
- /*
- * 'schedule()' is the scheduler function. It's a very simple and nice
- * scheduler: it's not perfect, but certainly works for most things.
- *
- * The goto is "interesting".
- *
- * NOTE!! Task 0 is the 'idle' task, which gets called when no other
- * tasks can run. It can not be killed, and it cannot sleep. The 'state'
- * information in task[0] is never used.
- */
- asmlinkage void schedule(void)
- {
- struct schedule_data * sched_data;
- struct task_struct *prev, *next, *p;
- struct list_head *tmp;
- int this_cpu, c;
- spin_lock_prefetch(&runqueue_lock);
- BUG_ON(!current->active_mm);
- need_resched_back:
- prev = current;
- this_cpu = prev->processor;
- if (unlikely(in_interrupt())) {
- printk("Scheduling in interruptn");
- BUG();
- }
- release_kernel_lock(prev, this_cpu);
- /*
- * 'sched_data' is protected by the fact that we can run
- * only one process per CPU.
- */
- sched_data = & aligned_data[this_cpu].schedule_data;
- spin_lock_irq(&runqueue_lock);
- /* move an exhausted RR process to be last.. */
- if (unlikely(prev->policy == SCHED_RR))
- if (!prev->counter) {
- prev->counter = NICE_TO_TICKS(prev->nice);
- move_last_runqueue(prev);
- }
- switch (prev->state) {
- case TASK_INTERRUPTIBLE:
- if (signal_pending(prev)) {
- prev->state = TASK_RUNNING;
- break;
- }
- default:
- del_from_runqueue(prev);
- case TASK_RUNNING:;
- }
- prev->need_resched = 0;
- /*
- * this is the scheduler proper:
- */
- repeat_schedule:
- /*
- * Default process to select..
- */
- next = idle_task(this_cpu);
- c = -1000;
- list_for_each(tmp, &runqueue_head) {
- p = list_entry(tmp, struct task_struct, run_list);
- if (can_schedule(p, this_cpu)) {
- int weight = goodness(p, this_cpu, prev->active_mm);
- if (weight > c)
- c = weight, next = p;
- }
- }
- /* Do we need to re-calculate counters? */
- if (unlikely(!c)) {
- struct task_struct *p;
- spin_unlock_irq(&runqueue_lock);
- read_lock(&tasklist_lock);
- for_each_task(p)
- p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
- read_unlock(&tasklist_lock);
- spin_lock_irq(&runqueue_lock);
- goto repeat_schedule;
- }
- /*
- * from this point on nothing can prevent us from
- * switching to the next task, save this fact in
- * sched_data.
- */
- sched_data->curr = next;
- task_set_cpu(next, this_cpu);
- spin_unlock_irq(&runqueue_lock);
- if (unlikely(prev == next)) {
- /* We won't go through the normal tail, so do this by hand */
- prev->policy &= ~SCHED_YIELD;
- goto same_process;
- }
- #ifdef CONFIG_SMP
- /*
- * maintain the per-process 'last schedule' value.
- * (this has to be recalculated even if we reschedule to
- * the same process) Currently this is only used on SMP,
- * and it's approximate, so we do not have to maintain
- * it while holding the runqueue spinlock.
- */
- sched_data->last_schedule = get_cycles();
- /*
- * We drop the scheduler lock early (it's a global spinlock),
- * thus we have to lock the previous process from getting
- * rescheduled during switch_to().
- */
- #endif /* CONFIG_SMP */
- kstat.context_swtch++;
- /*
- * there are 3 processes which are affected by a context switch:
- *
- * prev == .... ==> (last => next)
- *
- * It's the 'much more previous' 'prev' that is on next's stack,
- * but prev is set to (the just run) 'last' process by switch_to().
- * This might sound slightly confusing but makes tons of sense.
- */
- prepare_to_switch();
- {
- struct mm_struct *mm = next->mm;
- struct mm_struct *oldmm = prev->active_mm;
- if (!mm) {
- BUG_ON(next->active_mm);
- next->active_mm = oldmm;
- atomic_inc(&oldmm->mm_count);
- enter_lazy_tlb(oldmm, next, this_cpu);
- } else {
- BUG_ON(next->active_mm != mm);
- switch_mm(oldmm, mm, next, this_cpu);
- }
- if (!prev->mm) {
- prev->active_mm = NULL;
- mmdrop(oldmm);
- }
- }
- /*
- * This just switches the register state and the
- * stack.
- */
- switch_to(prev, next, prev);
- __schedule_tail(prev);
- same_process:
- reacquire_kernel_lock(current);
- if (current->need_resched)
- goto need_resched_back;
- return;
- }
- /*
- * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just wake everything
- * up. If it's an exclusive wakeup (nr_exclusive == small +ve number) then we wake all the
- * non-exclusive tasks and one exclusive task.
- *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns zero
- * in this (rare) case, and we handle it by contonuing to scan the queue.
- */
- static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode,
- int nr_exclusive, const int sync)
- {
- struct list_head *tmp;
- struct task_struct *p;
- CHECK_MAGIC_WQHEAD(q);
- WQ_CHECK_LIST_HEAD(&q->task_list);
-
- list_for_each(tmp,&q->task_list) {
- unsigned int state;
- wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
- CHECK_MAGIC(curr->__magic);
- p = curr->task;
- state = p->state;
- if (state & mode) {
- WQ_NOTE_WAKER(curr);
- if (try_to_wake_up(p, sync) && (curr->flags&WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
- break;
- }
- }
- }
- void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr)
- {
- if (q) {
- unsigned long flags;
- wq_read_lock_irqsave(&q->lock, flags);
- __wake_up_common(q, mode, nr, 0);
- wq_read_unlock_irqrestore(&q->lock, flags);
- }
- }
- void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr)
- {
- if (q) {
- unsigned long flags;
- wq_read_lock_irqsave(&q->lock, flags);
- __wake_up_common(q, mode, nr, 1);
- wq_read_unlock_irqrestore(&q->lock, flags);
- }
- }
- void complete(struct completion *x)
- {
- unsigned long flags;
- spin_lock_irqsave(&x->wait.lock, flags);
- x->done++;
- __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, 0);
- spin_unlock_irqrestore(&x->wait.lock, flags);
- }
- void wait_for_completion(struct completion *x)
- {
- spin_lock_irq(&x->wait.lock);
- if (!x->done) {
- DECLARE_WAITQUEUE(wait, current);
- wait.flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(&x->wait, &wait);
- do {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- spin_unlock_irq(&x->wait.lock);
- schedule();
- spin_lock_irq(&x->wait.lock);
- } while (!x->done);
- __remove_wait_queue(&x->wait, &wait);
- }
- x->done--;
- spin_unlock_irq(&x->wait.lock);
- }
- #define SLEEP_ON_VAR
- unsigned long flags;
- wait_queue_t wait;
- init_waitqueue_entry(&wait, current);
- #define SLEEP_ON_HEAD
- wq_write_lock_irqsave(&q->lock,flags);
- __add_wait_queue(q, &wait);
- wq_write_unlock(&q->lock);
- #define SLEEP_ON_TAIL
- wq_write_lock_irq(&q->lock);
- __remove_wait_queue(q, &wait);
- wq_write_unlock_irqrestore(&q->lock,flags);
- void interruptible_sleep_on(wait_queue_head_t *q)
- {
- SLEEP_ON_VAR
- current->state = TASK_INTERRUPTIBLE;
- SLEEP_ON_HEAD
- schedule();
- SLEEP_ON_TAIL
- }
- long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
- {
- SLEEP_ON_VAR
- current->state = TASK_INTERRUPTIBLE;
- SLEEP_ON_HEAD
- timeout = schedule_timeout(timeout);
- SLEEP_ON_TAIL
- return timeout;
- }
- void sleep_on(wait_queue_head_t *q)
- {
- SLEEP_ON_VAR
-
- current->state = TASK_UNINTERRUPTIBLE;
- SLEEP_ON_HEAD
- schedule();
- SLEEP_ON_TAIL
- }
- long sleep_on_timeout(wait_queue_head_t *q, long timeout)
- {
- SLEEP_ON_VAR
-
- current->state = TASK_UNINTERRUPTIBLE;
- SLEEP_ON_HEAD
- timeout = schedule_timeout(timeout);
- SLEEP_ON_TAIL
- return timeout;
- }
- void scheduling_functions_end_here(void) { }
- #ifndef __alpha__
- /*
- * This has been replaced by sys_setpriority. Maybe it should be
- * moved into the arch dependent tree for those ports that require
- * it for backward compatibility?
- */
- asmlinkage long sys_nice(int increment)
- {
- long newprio;
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
- if (increment < 0) {
- if (!capable(CAP_SYS_NICE))
- return -EPERM;
- if (increment < -40)
- increment = -40;
- }
- if (increment > 40)
- increment = 40;
- newprio = current->nice + increment;
- if (newprio < -20)
- newprio = -20;
- if (newprio > 19)
- newprio = 19;
- current->nice = newprio;
- return 0;
- }
- #endif
- static inline struct task_struct *find_process_by_pid(pid_t pid)
- {
- struct task_struct *tsk = current;
- if (pid)
- tsk = find_task_by_pid(pid);
- return tsk;
- }
- static int setscheduler(pid_t pid, int policy,
- struct sched_param *param)
- {
- struct sched_param lp;
- struct task_struct *p;
- int retval;
- retval = -EINVAL;
- if (!param || pid < 0)
- goto out_nounlock;
- retval = -EFAULT;
- if (copy_from_user(&lp, param, sizeof(struct sched_param)))
- goto out_nounlock;
- /*
- * We play safe to avoid deadlocks.
- */
- read_lock_irq(&tasklist_lock);
- spin_lock(&runqueue_lock);
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
-
- if (policy < 0)
- policy = p->policy;
- else {
- retval = -EINVAL;
- if (policy != SCHED_FIFO && policy != SCHED_RR &&
- policy != SCHED_OTHER)
- goto out_unlock;
- }
-
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
- * priority for SCHED_OTHER is 0.
- */
- retval = -EINVAL;
- if (lp.sched_priority < 0 || lp.sched_priority > 99)
- goto out_unlock;
- if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
- goto out_unlock;
- retval = -EPERM;
- if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
- !capable(CAP_SYS_NICE))
- goto out_unlock;
- if ((current->euid != p->euid) && (current->euid != p->uid) &&
- !capable(CAP_SYS_NICE))
- goto out_unlock;
- retval = 0;
- p->policy = policy;
- p->rt_priority = lp.sched_priority;
- current->need_resched = 1;
- out_unlock:
- spin_unlock(&runqueue_lock);
- read_unlock_irq(&tasklist_lock);
- out_nounlock:
- return retval;
- }
- asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
- struct sched_param *param)
- {
- return setscheduler(pid, policy, param);
- }
- asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
- {
- return setscheduler(pid, -1, param);
- }
- asmlinkage long sys_sched_getscheduler(pid_t pid)
- {
- struct task_struct *p;
- int retval;
- retval = -EINVAL;
- if (pid < 0)
- goto out_nounlock;
- retval = -ESRCH;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (p)
- retval = p->policy & ~SCHED_YIELD;
- read_unlock(&tasklist_lock);
- out_nounlock:
- return retval;
- }
- asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
- {
- struct task_struct *p;
- struct sched_param lp;
- int retval;
- retval = -EINVAL;
- if (!param || pid < 0)
- goto out_nounlock;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
- lp.sched_priority = p->rt_priority;
- read_unlock(&tasklist_lock);
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
- out_nounlock:
- return retval;
- out_unlock:
- read_unlock(&tasklist_lock);
- return retval;
- }
- asmlinkage long sys_sched_yield(void)
- {
- /*
- * Trick. sched_yield() first counts the number of truly
- * 'pending' runnable processes, then returns if it's
- * only the current processes. (This test does not have
- * to be atomic.) In threaded applications this optimization
- * gets triggered quite often.
- */
- int nr_pending = nr_running;
- #if CONFIG_SMP
- int i;
- // Subtract non-idle processes running on other CPUs.
- for (i = 0; i < smp_num_cpus; i++) {
- int cpu = cpu_logical_map(i);
- if (aligned_data[cpu].schedule_data.curr != idle_task(cpu))
- nr_pending--;
- }
- #else
- // on UP this process is on the runqueue as well
- nr_pending--;
- #endif
- if (nr_pending) {
- /*
- * This process can only be rescheduled by us,
- * so this is safe without any locking.
- */
- if (current->policy == SCHED_OTHER)
- current->policy |= SCHED_YIELD;
- current->need_resched = 1;
- spin_lock_irq(&runqueue_lock);
- move_last_runqueue(current);
- spin_unlock_irq(&runqueue_lock);
- }
- return 0;
- }
- /**
- * yield - yield the current processor to other threads.
- *
- * this is a shortcut for kernel-space yielding - it marks the
- * thread runnable and calls sys_sched_yield().
- */
- void yield(void)
- {
- set_current_state(TASK_RUNNING);
- sys_sched_yield();
- schedule();
- }
- void __cond_resched(void)
- {
- set_current_state(TASK_RUNNING);
- schedule();
- }
- asmlinkage long sys_sched_get_priority_max(int policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 99;
- break;
- case SCHED_OTHER:
- ret = 0;
- break;
- }
- return ret;
- }
- asmlinkage long sys_sched_get_priority_min(int policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_OTHER:
- ret = 0;
- }
- return ret;
- }
- asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
- {
- struct timespec t;
- struct task_struct *p;
- int retval = -EINVAL;
- if (pid < 0)
- goto out_nounlock;
- retval = -ESRCH;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (p)
- jiffies_to_timespec(p->policy & SCHED_FIFO ? 0 : NICE_TO_TICKS(p->nice),
- &t);
- read_unlock(&tasklist_lock);
- if (p)
- retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
- out_nounlock:
- return retval;
- }
- static void show_task(struct task_struct * p)
- {
- unsigned long free = 0;
- int state;
- static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
- printk("%-13.13s ", p->comm);
- state = p->state ? ffz(~p->state) + 1 : 0;
- if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
- printk(stat_nam[state]);
- else
- printk(" ");
- #if (BITS_PER_LONG == 32)
- if (p == current)
- printk(" current ");
- else
- printk(" %08lX ", thread_saved_pc(&p->thread));
- #else
- if (p == current)
- printk(" current task ");
- else
- printk(" %016lx ", thread_saved_pc(&p->thread));
- #endif
- {
- unsigned long * n = (unsigned long *) (p+1);
- while (!*n)
- n++;
- free = (unsigned long) n - (unsigned long)(p+1);
- }
- printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
- if (p->p_cptr)
- printk("%5d ", p->p_cptr->pid);
- else
- printk(" ");
- if (p->p_ysptr)
- printk("%7d", p->p_ysptr->pid);
- else
- printk(" ");
- if (p->p_osptr)
- printk(" %5d", p->p_osptr->pid);
- else
- printk(" ");
- if (!p->mm)
- printk(" (L-TLB)n");
- else
- printk(" (NOTLB)n");
- {
- extern void show_trace_task(struct task_struct *tsk);
- show_trace_task(p);
- }
- }
- char * render_sigset_t(sigset_t *set, char *buffer)
- {
- int i = _NSIG, x;
- do {
- i -= 4, x = 0;
- if (sigismember(set, i+1)) x |= 1;
- if (sigismember(set, i+2)) x |= 2;
- if (sigismember(set, i+3)) x |= 4;
- if (sigismember(set, i+4)) x |= 8;
- *buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
- } while (i >= 4);
- *buffer = 0;
- return buffer;
- }
- void show_state(void)
- {
- struct task_struct *p;
- #if (BITS_PER_LONG == 32)
- printk("n"
- " free siblingn");
- printk(" task PC stack pid father child younger oldern");
- #else
- printk("n"
- " free siblingn");
- printk(" task PC stack pid father child younger oldern");
- #endif
- read_lock(&tasklist_lock);
- for_each_task(p) {
- /*
- * reset the NMI-timeout, listing all files on a slow
- * console might take alot of time:
- */
- touch_nmi_watchdog();
- show_task(p);
- }
- read_unlock(&tasklist_lock);
- }
- /**
- * reparent_to_init() - Reparent the calling kernel thread to the init task.
- *
- * If a kernel thread is launched as a result of a system call, or if
- * it ever exits, it should generally reparent itself to init so that
- * it is correctly cleaned up on exit.
- *
- * The various task state such as scheduling policy and priority may have
- * been inherited fro a user process, so we reset them to sane values here.
- *
- * NOTE that reparent_to_init() gives the caller full capabilities.
- */
- void reparent_to_init(void)
- {
- struct task_struct *this_task = current;
- write_lock_irq(&tasklist_lock);
- /* Reparent to init */
- REMOVE_LINKS(this_task);
- this_task->p_pptr = child_reaper;
- this_task->p_opptr = child_reaper;
- SET_LINKS(this_task);
- /* Set the exit signal to SIGCHLD so we signal init on exit */
- this_task->exit_signal = SIGCHLD;
- /* We also take the runqueue_lock while altering task fields
- * which affect scheduling decisions */
- spin_lock(&runqueue_lock);
- this_task->ptrace = 0;
- this_task->nice = DEF_NICE;
- this_task->policy = SCHED_OTHER;
- /* cpus_allowed? */
- /* rt_priority? */
- /* signals? */
- this_task->cap_effective = CAP_INIT_EFF_SET;
- this_task->cap_inheritable = CAP_INIT_INH_SET;
- this_task->cap_permitted = CAP_FULL_SET;
- this_task->keep_capabilities = 0;
- memcpy(this_task->rlim, init_task.rlim, sizeof(*(this_task->rlim)));
- this_task->user = INIT_USER;
- spin_unlock(&runqueue_lock);
- write_unlock_irq(&tasklist_lock);
- }
- /*
- * Put all the gunge required to become a kernel thread without
- * attached user resources in one place where it belongs.
- */
- void daemonize(void)
- {
- struct fs_struct *fs;
- /*
- * If we were started as result of loading a module, close all of the
- * user space pages. We don't need them, and if we didn't close them
- * they would be locked into memory.
- */
- exit_mm(current);
- current->session = 1;
- current->pgrp = 1;
- current->tty = NULL;
- /* Become as one with the init task */
- exit_fs(current); /* current->fs->count--; */
- fs = init_task.fs;
- current->fs = fs;
- atomic_inc(&fs->count);
- exit_files(current);
- current->files = init_task.files;
- atomic_inc(¤t->files->count);
- }
- extern unsigned long wait_init_idle;
- void __init init_idle(void)
- {
- struct schedule_data * sched_data;
- sched_data = &aligned_data[smp_processor_id()].schedule_data;
- if (current != &init_task && task_on_runqueue(current)) {
- printk("UGH! (%d:%d) was on the runqueue, removing.n",
- smp_processor_id(), current->pid);
- del_from_runqueue(current);
- }
- sched_data->curr = current;
- sched_data->last_schedule = get_cycles();
- clear_bit(current->processor, &wait_init_idle);
- }
- extern void init_timervecs (void);
- void __init sched_init(void)
- {
- /*
- * We have to do a little magic to get the first
- * process right in SMP mode.
- */
- int cpu = smp_processor_id();
- int nr;
- init_task.processor = cpu;
- for(nr = 0; nr < PIDHASH_SZ; nr++)
- pidhash[nr] = NULL;
- init_timervecs();
- init_bh(TIMER_BH, timer_bh);
- init_bh(TQUEUE_BH, tqueue_bh);
- init_bh(IMMEDIATE_BH, immediate_bh);
- /*
- * The boot idle thread does lazy MMU switching as well:
- */
- atomic_inc(&init_mm.mm_count);
- enter_lazy_tlb(&init_mm, current, cpu);
- }