tcp_input.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:109k
- /*
- * INET An implementation of the TCP/IP protocol suite for the LINUX
- * operating system. INET is implemented using the BSD Socket
- * interface as the means of communication with the user level.
- *
- * Implementation of the Transmission Control Protocol(TCP).
- *
- * Version: $Id: tcp_input.c,v 1.241.2.1 2002/02/13 05:37:15 davem Exp $
- *
- * Authors: Ross Biro, <bir7@leland.Stanford.Edu>
- * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
- * Mark Evans, <evansmp@uhura.aston.ac.uk>
- * Corey Minyard <wf-rch!minyard@relay.EU.net>
- * Florian La Roche, <flla@stud.uni-sb.de>
- * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
- * Linus Torvalds, <torvalds@cs.helsinki.fi>
- * Alan Cox, <gw4pts@gw4pts.ampr.org>
- * Matthew Dillon, <dillon@apollo.west.oic.com>
- * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
- * Jorge Cwik, <jorge@laser.satlink.net>
- */
- /*
- * Changes:
- * Pedro Roque : Fast Retransmit/Recovery.
- * Two receive queues.
- * Retransmit queue handled by TCP.
- * Better retransmit timer handling.
- * New congestion avoidance.
- * Header prediction.
- * Variable renaming.
- *
- * Eric : Fast Retransmit.
- * Randy Scott : MSS option defines.
- * Eric Schenk : Fixes to slow start algorithm.
- * Eric Schenk : Yet another double ACK bug.
- * Eric Schenk : Delayed ACK bug fixes.
- * Eric Schenk : Floyd style fast retrans war avoidance.
- * David S. Miller : Don't allow zero congestion window.
- * Eric Schenk : Fix retransmitter so that it sends
- * next packet on ack of previous packet.
- * Andi Kleen : Moved open_request checking here
- * and process RSTs for open_requests.
- * Andi Kleen : Better prune_queue, and other fixes.
- * Andrey Savochkin: Fix RTT measurements in the presnce of
- * timestamps.
- * Andrey Savochkin: Check sequence numbers correctly when
- * removing SACKs due to in sequence incoming
- * data segments.
- * Andi Kleen: Make sure we never ack data there is not
- * enough room for. Also make this condition
- * a fatal error if it might still happen.
- * Andi Kleen: Add tcp_measure_rcv_mss to make
- * connections with MSS<min(MTU,ann. MSS)
- * work without delayed acks.
- * Andi Kleen: Process packets with PSH set in the
- * fast path.
- * J Hadi Salim: ECN support
- * Andrei Gurtov,
- * Pasi Sarolahti,
- * Panu Kuhlberg: Experimental audit of TCP (re)transmission
- * engine. Lots of bugs are found.
- */
- #include <linux/config.h>
- #include <linux/mm.h>
- #include <linux/sysctl.h>
- #include <net/tcp.h>
- #include <net/inet_common.h>
- #include <linux/ipsec.h>
- int sysctl_tcp_timestamps = 1;
- int sysctl_tcp_window_scaling = 1;
- int sysctl_tcp_sack = 1;
- int sysctl_tcp_fack = 1;
- int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
- #ifdef CONFIG_INET_ECN
- int sysctl_tcp_ecn = 1;
- #else
- int sysctl_tcp_ecn = 0;
- #endif
- int sysctl_tcp_dsack = 1;
- int sysctl_tcp_app_win = 31;
- int sysctl_tcp_adv_win_scale = 2;
- int sysctl_tcp_stdurg = 0;
- int sysctl_tcp_rfc1337 = 0;
- int sysctl_tcp_max_orphans = NR_FILE;
- #define FLAG_DATA 0x01 /* Incoming frame contained data. */
- #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
- #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
- #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
- #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
- #define FLAG_DATA_SACKED 0x20 /* New SACK. */
- #define FLAG_ECE 0x40 /* ECE in this ACK */
- #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
- #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
- #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
- #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
- #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
- #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
- #define IsReno(tp) ((tp)->sack_ok == 0)
- #define IsFack(tp) ((tp)->sack_ok & 2)
- #define IsDSack(tp) ((tp)->sack_ok & 4)
- #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
- /* Adapt the MSS value used to make delayed ack decision to the
- * real world.
- */
- static __inline__ void tcp_measure_rcv_mss(struct tcp_opt *tp, struct sk_buff *skb)
- {
- unsigned int len, lss;
- lss = tp->ack.last_seg_size;
- tp->ack.last_seg_size = 0;
- /* skb->len may jitter because of SACKs, even if peer
- * sends good full-sized frames.
- */
- len = skb->len;
- if (len >= tp->ack.rcv_mss) {
- tp->ack.rcv_mss = len;
- } else {
- /* Otherwise, we make more careful check taking into account,
- * that SACKs block is variable.
- *
- * "len" is invariant segment length, including TCP header.
- */
- len += skb->data - skb->h.raw;
- if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
- /* If PSH is not set, packet should be
- * full sized, provided peer TCP is not badly broken.
- * This observation (if it is correct 8)) allows
- * to handle super-low mtu links fairly.
- */
- (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
- !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
- /* Subtract also invariant (if peer is RFC compliant),
- * tcp header plus fixed timestamp option length.
- * Resulting "len" is MSS free of SACK jitter.
- */
- len -= tp->tcp_header_len;
- tp->ack.last_seg_size = len;
- if (len == lss) {
- tp->ack.rcv_mss = len;
- return;
- }
- }
- tp->ack.pending |= TCP_ACK_PUSHED;
- }
- }
- static void tcp_incr_quickack(struct tcp_opt *tp)
- {
- unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
- if (quickacks==0)
- quickacks=2;
- if (quickacks > tp->ack.quick)
- tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
- }
- void tcp_enter_quickack_mode(struct tcp_opt *tp)
- {
- tcp_incr_quickack(tp);
- tp->ack.pingpong = 0;
- tp->ack.ato = TCP_ATO_MIN;
- }
- /* Send ACKs quickly, if "quick" count is not exhausted
- * and the session is not interactive.
- */
- static __inline__ int tcp_in_quickack_mode(struct tcp_opt *tp)
- {
- return (tp->ack.quick && !tp->ack.pingpong);
- }
- /* Buffer size and advertised window tuning.
- *
- * 1. Tuning sk->sndbuf, when connection enters established state.
- */
- static void tcp_fixup_sndbuf(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int sndmem = tp->mss_clamp+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
- if (sk->sndbuf < 3*sndmem)
- sk->sndbuf = min(3*sndmem, sysctl_tcp_wmem[2]);
- }
- /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
- *
- * All tcp_full_space() is split to two parts: "network" buffer, allocated
- * forward and advertised in receiver window (tp->rcv_wnd) and
- * "application buffer", required to isolate scheduling/application
- * latencies from network.
- * window_clamp is maximal advertised window. It can be less than
- * tcp_full_space(), in this case tcp_full_space() - window_clamp
- * is reserved for "application" buffer. The less window_clamp is
- * the smoother our behaviour from viewpoint of network, but the lower
- * throughput and the higher sensitivity of the connection to losses. 8)
- *
- * rcv_ssthresh is more strict window_clamp used at "slow start"
- * phase to predict further behaviour of this connection.
- * It is used for two goals:
- * - to enforce header prediction at sender, even when application
- * requires some significant "application buffer". It is check #1.
- * - to prevent pruning of receive queue because of misprediction
- * of receiver window. Check #2.
- *
- * The scheme does not work when sender sends good segments opening
- * window and then starts to feed us spagetti. But it should work
- * in common situations. Otherwise, we have to rely on queue collapsing.
- */
- /* Slow part of check#2. */
- static int
- __tcp_grow_window(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
- {
- /* Optimize this! */
- int truesize = tcp_win_from_space(skb->truesize)/2;
- int window = tcp_full_space(sk)/2;
- while (tp->rcv_ssthresh <= window) {
- if (truesize <= skb->len)
- return 2*tp->ack.rcv_mss;
- truesize >>= 1;
- window >>= 1;
- }
- return 0;
- }
- static __inline__ void
- tcp_grow_window(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
- {
- /* Check #1 */
- if (tp->rcv_ssthresh < tp->window_clamp &&
- (int)tp->rcv_ssthresh < tcp_space(sk) &&
- !tcp_memory_pressure) {
- int incr;
- /* Check #2. Increase window, if skb with such overhead
- * will fit to rcvbuf in future.
- */
- if (tcp_win_from_space(skb->truesize) <= skb->len)
- incr = 2*tp->advmss;
- else
- incr = __tcp_grow_window(sk, tp, skb);
- if (incr) {
- tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
- tp->ack.quick |= 1;
- }
- }
- }
- /* 3. Tuning rcvbuf, when connection enters established state. */
- static void tcp_fixup_rcvbuf(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int rcvmem = tp->advmss+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
- /* Try to select rcvbuf so that 4 mss-sized segments
- * will fit to window and correspoding skbs will fit to our rcvbuf.
- * (was 3; 4 is minimum to allow fast retransmit to work.)
- */
- while (tcp_win_from_space(rcvmem) < tp->advmss)
- rcvmem += 128;
- if (sk->rcvbuf < 4*rcvmem)
- sk->rcvbuf = min(4*rcvmem, sysctl_tcp_rmem[2]);
- }
- /* 4. Try to fixup all. It is made iimediately after connection enters
- * established state.
- */
- static void tcp_init_buffer_space(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int maxwin;
- if (!(sk->userlocks&SOCK_RCVBUF_LOCK))
- tcp_fixup_rcvbuf(sk);
- if (!(sk->userlocks&SOCK_SNDBUF_LOCK))
- tcp_fixup_sndbuf(sk);
- maxwin = tcp_full_space(sk);
- if (tp->window_clamp >= maxwin) {
- tp->window_clamp = maxwin;
- if (sysctl_tcp_app_win && maxwin>4*tp->advmss)
- tp->window_clamp = max(maxwin-(maxwin>>sysctl_tcp_app_win), 4*tp->advmss);
- }
- /* Force reservation of one segment. */
- if (sysctl_tcp_app_win &&
- tp->window_clamp > 2*tp->advmss &&
- tp->window_clamp + tp->advmss > maxwin)
- tp->window_clamp = max(2*tp->advmss, maxwin-tp->advmss);
- tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- /* 5. Recalculate window clamp after socket hit its memory bounds. */
- static void tcp_clamp_window(struct sock *sk, struct tcp_opt *tp)
- {
- struct sk_buff *skb;
- unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
- int ofo_win = 0;
- tp->ack.quick = 0;
- skb_queue_walk(&tp->out_of_order_queue, skb) {
- ofo_win += skb->len;
- }
- /* If overcommit is due to out of order segments,
- * do not clamp window. Try to expand rcvbuf instead.
- */
- if (ofo_win) {
- if (sk->rcvbuf < sysctl_tcp_rmem[2] &&
- !(sk->userlocks&SOCK_RCVBUF_LOCK) &&
- !tcp_memory_pressure &&
- atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
- sk->rcvbuf = min(atomic_read(&sk->rmem_alloc), sysctl_tcp_rmem[2]);
- }
- if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf) {
- app_win += ofo_win;
- if (atomic_read(&sk->rmem_alloc) >= 2*sk->rcvbuf)
- app_win >>= 1;
- if (app_win > tp->ack.rcv_mss)
- app_win -= tp->ack.rcv_mss;
- app_win = max(app_win, 2U*tp->advmss);
- if (!ofo_win)
- tp->window_clamp = min(tp->window_clamp, app_win);
- tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
- }
- }
- /* There is something which you must keep in mind when you analyze the
- * behavior of the tp->ato delayed ack timeout interval. When a
- * connection starts up, we want to ack as quickly as possible. The
- * problem is that "good" TCP's do slow start at the beginning of data
- * transmission. The means that until we send the first few ACK's the
- * sender will sit on his end and only queue most of his data, because
- * he can only send snd_cwnd unacked packets at any given time. For
- * each ACK we send, he increments snd_cwnd and transmits more of his
- * queue. -DaveM
- */
- static void tcp_event_data_recv(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
- {
- u32 now;
- tcp_schedule_ack(tp);
- tcp_measure_rcv_mss(tp, skb);
- now = tcp_time_stamp;
- if (!tp->ack.ato) {
- /* The _first_ data packet received, initialize
- * delayed ACK engine.
- */
- tcp_incr_quickack(tp);
- tp->ack.ato = TCP_ATO_MIN;
- } else {
- int m = now - tp->ack.lrcvtime;
- if (m <= TCP_ATO_MIN/2) {
- /* The fastest case is the first. */
- tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
- } else if (m < tp->ack.ato) {
- tp->ack.ato = (tp->ack.ato>>1) + m;
- if (tp->ack.ato > tp->rto)
- tp->ack.ato = tp->rto;
- } else if (m > tp->rto) {
- /* Too long gap. Apparently sender falled to
- * restart window, so that we send ACKs quickly.
- */
- tcp_incr_quickack(tp);
- tcp_mem_reclaim(sk);
- }
- }
- tp->ack.lrcvtime = now;
- TCP_ECN_check_ce(tp, skb);
- if (skb->len >= 128)
- tcp_grow_window(sk, tp, skb);
- }
- /* Called to compute a smoothed rtt estimate. The data fed to this
- * routine either comes from timestamps, or from segments that were
- * known _not_ to have been retransmitted [see Karn/Partridge
- * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
- * piece by Van Jacobson.
- * NOTE: the next three routines used to be one big routine.
- * To save cycles in the RFC 1323 implementation it was better to break
- * it up into three procedures. -- erics
- */
- static __inline__ void tcp_rtt_estimator(struct tcp_opt *tp, __u32 mrtt)
- {
- long m = mrtt; /* RTT */
- /* The following amusing code comes from Jacobson's
- * article in SIGCOMM '88. Note that rtt and mdev
- * are scaled versions of rtt and mean deviation.
- * This is designed to be as fast as possible
- * m stands for "measurement".
- *
- * On a 1990 paper the rto value is changed to:
- * RTO = rtt + 4 * mdev
- *
- * Funny. This algorithm seems to be very broken.
- * These formulae increase RTO, when it should be decreased, increase
- * too slowly, when it should be incresed fastly, decrease too fastly
- * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
- * does not matter how to _calculate_ it. Seems, it was trap
- * that VJ failed to avoid. 8)
- */
- if(m == 0)
- m = 1;
- if (tp->srtt != 0) {
- m -= (tp->srtt >> 3); /* m is now error in rtt est */
- tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
- if (m < 0) {
- m = -m; /* m is now abs(error) */
- m -= (tp->mdev >> 2); /* similar update on mdev */
- /* This is similar to one of Eifel findings.
- * Eifel blocks mdev updates when rtt decreases.
- * This solution is a bit different: we use finer gain
- * for mdev in this case (alpha*beta).
- * Like Eifel it also prevents growth of rto,
- * but also it limits too fast rto decreases,
- * happening in pure Eifel.
- */
- if (m > 0)
- m >>= 3;
- } else {
- m -= (tp->mdev >> 2); /* similar update on mdev */
- }
- tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
- if (tp->mdev > tp->mdev_max) {
- tp->mdev_max = tp->mdev;
- if (tp->mdev_max > tp->rttvar)
- tp->rttvar = tp->mdev_max;
- }
- if (after(tp->snd_una, tp->rtt_seq)) {
- if (tp->mdev_max < tp->rttvar)
- tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
- tp->rtt_seq = tp->snd_nxt;
- tp->mdev_max = TCP_RTO_MIN;
- }
- } else {
- /* no previous measure. */
- tp->srtt = m<<3; /* take the measured time to be rtt */
- tp->mdev = m<<1; /* make sure rto = 3*rtt */
- tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
- tp->rtt_seq = tp->snd_nxt;
- }
- }
- /* Calculate rto without backoff. This is the second half of Van Jacobson's
- * routine referred to above.
- */
- static __inline__ void tcp_set_rto(struct tcp_opt *tp)
- {
- /* Old crap is replaced with new one. 8)
- *
- * More seriously:
- * 1. If rtt variance happened to be less 50msec, it is hallucination.
- * It cannot be less due to utterly erratic ACK generation made
- * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
- * to do with delayed acks, because at cwnd>2 true delack timeout
- * is invisible. Actually, Linux-2.4 also generates erratic
- * ACKs in some curcumstances.
- */
- tp->rto = (tp->srtt >> 3) + tp->rttvar;
- /* 2. Fixups made earlier cannot be right.
- * If we do not estimate RTO correctly without them,
- * all the algo is pure shit and should be replaced
- * with correct one. It is exaclty, which we pretend to do.
- */
- }
- /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
- * guarantees that rto is higher.
- */
- static __inline__ void tcp_bound_rto(struct tcp_opt *tp)
- {
- if (tp->rto > TCP_RTO_MAX)
- tp->rto = TCP_RTO_MAX;
- }
- /* Save metrics learned by this TCP session.
- This function is called only, when TCP finishes successfully
- i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
- */
- void tcp_update_metrics(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- struct dst_entry *dst = __sk_dst_get(sk);
- dst_confirm(dst);
- if (dst && (dst->flags&DST_HOST)) {
- int m;
- if (tp->backoff || !tp->srtt) {
- /* This session failed to estimate rtt. Why?
- * Probably, no packets returned in time.
- * Reset our results.
- */
- if (!(dst->mxlock&(1<<RTAX_RTT)))
- dst->rtt = 0;
- return;
- }
- m = dst->rtt - tp->srtt;
- /* If newly calculated rtt larger than stored one,
- * store new one. Otherwise, use EWMA. Remember,
- * rtt overestimation is always better than underestimation.
- */
- if (!(dst->mxlock&(1<<RTAX_RTT))) {
- if (m <= 0)
- dst->rtt = tp->srtt;
- else
- dst->rtt -= (m>>3);
- }
- if (!(dst->mxlock&(1<<RTAX_RTTVAR))) {
- if (m < 0)
- m = -m;
- /* Scale deviation to rttvar fixed point */
- m >>= 1;
- if (m < tp->mdev)
- m = tp->mdev;
- if (m >= dst->rttvar)
- dst->rttvar = m;
- else
- dst->rttvar -= (dst->rttvar - m)>>2;
- }
- if (tp->snd_ssthresh >= 0xFFFF) {
- /* Slow start still did not finish. */
- if (dst->ssthresh &&
- !(dst->mxlock&(1<<RTAX_SSTHRESH)) &&
- (tp->snd_cwnd>>1) > dst->ssthresh)
- dst->ssthresh = (tp->snd_cwnd>>1);
- if (!(dst->mxlock&(1<<RTAX_CWND)) &&
- tp->snd_cwnd > dst->cwnd)
- dst->cwnd = tp->snd_cwnd;
- } else if (tp->snd_cwnd > tp->snd_ssthresh &&
- tp->ca_state == TCP_CA_Open) {
- /* Cong. avoidance phase, cwnd is reliable. */
- if (!(dst->mxlock&(1<<RTAX_SSTHRESH)))
- dst->ssthresh = max(tp->snd_cwnd>>1, tp->snd_ssthresh);
- if (!(dst->mxlock&(1<<RTAX_CWND)))
- dst->cwnd = (dst->cwnd + tp->snd_cwnd)>>1;
- } else {
- /* Else slow start did not finish, cwnd is non-sense,
- ssthresh may be also invalid.
- */
- if (!(dst->mxlock&(1<<RTAX_CWND)))
- dst->cwnd = (dst->cwnd + tp->snd_ssthresh)>>1;
- if (dst->ssthresh &&
- !(dst->mxlock&(1<<RTAX_SSTHRESH)) &&
- tp->snd_ssthresh > dst->ssthresh)
- dst->ssthresh = tp->snd_ssthresh;
- }
- if (!(dst->mxlock&(1<<RTAX_REORDERING))) {
- if (dst->reordering < tp->reordering &&
- tp->reordering != sysctl_tcp_reordering)
- dst->reordering = tp->reordering;
- }
- }
- }
- /* Increase initial CWND conservatively: if estimated
- * RTT is low enough (<20msec) or if we have some preset ssthresh.
- *
- * Numbers are taken from RFC2414.
- */
- __u32 tcp_init_cwnd(struct tcp_opt *tp)
- {
- __u32 cwnd;
- if (tp->mss_cache > 1460)
- return 2;
- cwnd = (tp->mss_cache > 1095) ? 3 : 4;
- if (!tp->srtt || (tp->snd_ssthresh >= 0xFFFF && tp->srtt > ((HZ/50)<<3)))
- cwnd = 2;
- else if (cwnd > tp->snd_ssthresh)
- cwnd = tp->snd_ssthresh;
- return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
- }
- /* Initialize metrics on socket. */
- static void tcp_init_metrics(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- struct dst_entry *dst = __sk_dst_get(sk);
- if (dst == NULL)
- goto reset;
- dst_confirm(dst);
- if (dst->mxlock&(1<<RTAX_CWND))
- tp->snd_cwnd_clamp = dst->cwnd;
- if (dst->ssthresh) {
- tp->snd_ssthresh = dst->ssthresh;
- if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
- tp->snd_ssthresh = tp->snd_cwnd_clamp;
- }
- if (dst->reordering && tp->reordering != dst->reordering) {
- tp->sack_ok &= ~2;
- tp->reordering = dst->reordering;
- }
- if (dst->rtt == 0)
- goto reset;
- if (!tp->srtt && dst->rtt < (TCP_TIMEOUT_INIT<<3))
- goto reset;
- /* Initial rtt is determined from SYN,SYN-ACK.
- * The segment is small and rtt may appear much
- * less than real one. Use per-dst memory
- * to make it more realistic.
- *
- * A bit of theory. RTT is time passed after "normal" sized packet
- * is sent until it is ACKed. In normal curcumstances sending small
- * packets force peer to delay ACKs and calculation is correct too.
- * The algorithm is adaptive and, provided we follow specs, it
- * NEVER underestimate RTT. BUT! If peer tries to make some clever
- * tricks sort of "quick acks" for time long enough to decrease RTT
- * to low value, and then abruptly stops to do it and starts to delay
- * ACKs, wait for troubles.
- */
- if (dst->rtt > tp->srtt)
- tp->srtt = dst->rtt;
- if (dst->rttvar > tp->mdev) {
- tp->mdev = dst->rttvar;
- tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
- }
- tcp_set_rto(tp);
- tcp_bound_rto(tp);
- if (tp->rto < TCP_TIMEOUT_INIT && !tp->saw_tstamp)
- goto reset;
- tp->snd_cwnd = tcp_init_cwnd(tp);
- tp->snd_cwnd_stamp = tcp_time_stamp;
- return;
- reset:
- /* Play conservative. If timestamps are not
- * supported, TCP will fail to recalculate correct
- * rtt, if initial rto is too small. FORGET ALL AND RESET!
- */
- if (!tp->saw_tstamp && tp->srtt) {
- tp->srtt = 0;
- tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
- tp->rto = TCP_TIMEOUT_INIT;
- }
- }
- static void tcp_update_reordering(struct tcp_opt *tp, int metric, int ts)
- {
- if (metric > tp->reordering) {
- tp->reordering = min(TCP_MAX_REORDERING, metric);
- /* This exciting event is worth to be remembered. 8) */
- if (ts)
- NET_INC_STATS_BH(TCPTSReorder);
- else if (IsReno(tp))
- NET_INC_STATS_BH(TCPRenoReorder);
- else if (IsFack(tp))
- NET_INC_STATS_BH(TCPFACKReorder);
- else
- NET_INC_STATS_BH(TCPSACKReorder);
- #if FASTRETRANS_DEBUG > 1
- printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%dn",
- tp->sack_ok, tp->ca_state,
- tp->reordering, tp->fackets_out, tp->sacked_out,
- tp->undo_marker ? tp->undo_retrans : 0);
- #endif
- /* Disable FACK yet. */
- tp->sack_ok &= ~2;
- }
- }
- /* This procedure tags the retransmission queue when SACKs arrive.
- *
- * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
- * Packets in queue with these bits set are counted in variables
- * sacked_out, retrans_out and lost_out, correspondingly.
- *
- * Valid combinations are:
- * Tag InFlight Description
- * 0 1 - orig segment is in flight.
- * S 0 - nothing flies, orig reached receiver.
- * L 0 - nothing flies, orig lost by net.
- * R 2 - both orig and retransmit are in flight.
- * L|R 1 - orig is lost, retransmit is in flight.
- * S|R 1 - orig reached receiver, retrans is still in flight.
- * (L|S|R is logically valid, it could occur when L|R is sacked,
- * but it is equivalent to plain S and code short-curcuits it to S.
- * L|S is logically invalid, it would mean -1 packet in flight 8))
- *
- * These 6 states form finite state machine, controlled by the following events:
- * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
- * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
- * 3. Loss detection event of one of three flavors:
- * A. Scoreboard estimator decided the packet is lost.
- * A'. Reno "three dupacks" marks head of queue lost.
- * A''. Its FACK modfication, head until snd.fack is lost.
- * B. SACK arrives sacking data transmitted after never retransmitted
- * hole was sent out.
- * C. SACK arrives sacking SND.NXT at the moment, when the
- * segment was retransmitted.
- * 4. D-SACK added new rule: D-SACK changes any tag to S.
- *
- * It is pleasant to note, that state diagram turns out to be commutative,
- * so that we are allowed not to be bothered by order of our actions,
- * when multiple events arrive simultaneously. (see the function below).
- *
- * Reordering detection.
- * --------------------
- * Reordering metric is maximal distance, which a packet can be displaced
- * in packet stream. With SACKs we can estimate it:
- *
- * 1. SACK fills old hole and the corresponding segment was not
- * ever retransmitted -> reordering. Alas, we cannot use it
- * when segment was retransmitted.
- * 2. The last flaw is solved with D-SACK. D-SACK arrives
- * for retransmitted and already SACKed segment -> reordering..
- * Both of these heuristics are not used in Loss state, when we cannot
- * account for retransmits accurately.
- */
- static int
- tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
- struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
- int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
- int reord = tp->packets_out;
- int prior_fackets;
- u32 lost_retrans = 0;
- int flag = 0;
- int i;
- if (!tp->sacked_out)
- tp->fackets_out = 0;
- prior_fackets = tp->fackets_out;
- for (i=0; i<num_sacks; i++, sp++) {
- struct sk_buff *skb;
- __u32 start_seq = ntohl(sp->start_seq);
- __u32 end_seq = ntohl(sp->end_seq);
- int fack_count = 0;
- int dup_sack = 0;
- /* Check for D-SACK. */
- if (i == 0) {
- u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
- if (before(start_seq, ack)) {
- dup_sack = 1;
- tp->sack_ok |= 4;
- NET_INC_STATS_BH(TCPDSACKRecv);
- } else if (num_sacks > 1 &&
- !after(end_seq, ntohl(sp[1].end_seq)) &&
- !before(start_seq, ntohl(sp[1].start_seq))) {
- dup_sack = 1;
- tp->sack_ok |= 4;
- NET_INC_STATS_BH(TCPDSACKOfoRecv);
- }
- /* D-SACK for already forgotten data...
- * Do dumb counting. */
- if (dup_sack &&
- !after(end_seq, prior_snd_una) &&
- after(end_seq, tp->undo_marker))
- tp->undo_retrans--;
- /* Eliminate too old ACKs, but take into
- * account more or less fresh ones, they can
- * contain valid SACK info.
- */
- if (before(ack, prior_snd_una-tp->max_window))
- return 0;
- }
- /* Event "B" in the comment above. */
- if (after(end_seq, tp->high_seq))
- flag |= FLAG_DATA_LOST;
- for_retrans_queue(skb, sk, tp) {
- u8 sacked = TCP_SKB_CB(skb)->sacked;
- int in_sack;
- /* The retransmission queue is always in order, so
- * we can short-circuit the walk early.
- */
- if(!before(TCP_SKB_CB(skb)->seq, end_seq))
- break;
- fack_count++;
- in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
- !before(end_seq, TCP_SKB_CB(skb)->end_seq);
- /* Account D-SACK for retransmitted packet. */
- if ((dup_sack && in_sack) &&
- (sacked & TCPCB_RETRANS) &&
- after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
- tp->undo_retrans--;
- /* The frame is ACKed. */
- if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
- if (sacked&TCPCB_RETRANS) {
- if ((dup_sack && in_sack) &&
- (sacked&TCPCB_SACKED_ACKED))
- reord = min(fack_count, reord);
- } else {
- /* If it was in a hole, we detected reordering. */
- if (fack_count < prior_fackets &&
- !(sacked&TCPCB_SACKED_ACKED))
- reord = min(fack_count, reord);
- }
- /* Nothing to do; acked frame is about to be dropped. */
- continue;
- }
- if ((sacked&TCPCB_SACKED_RETRANS) &&
- after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
- (!lost_retrans || after(end_seq, lost_retrans)))
- lost_retrans = end_seq;
- if (!in_sack)
- continue;
- if (!(sacked&TCPCB_SACKED_ACKED)) {
- if (sacked & TCPCB_SACKED_RETRANS) {
- /* If the segment is not tagged as lost,
- * we do not clear RETRANS, believing
- * that retransmission is still in flight.
- */
- if (sacked & TCPCB_LOST) {
- TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
- tp->lost_out--;
- tp->retrans_out--;
- }
- } else {
- /* New sack for not retransmitted frame,
- * which was in hole. It is reordering.
- */
- if (!(sacked & TCPCB_RETRANS) &&
- fack_count < prior_fackets)
- reord = min(fack_count, reord);
- if (sacked & TCPCB_LOST) {
- TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
- tp->lost_out--;
- }
- }
- TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
- flag |= FLAG_DATA_SACKED;
- tp->sacked_out++;
- if (fack_count > tp->fackets_out)
- tp->fackets_out = fack_count;
- } else {
- if (dup_sack && (sacked&TCPCB_RETRANS))
- reord = min(fack_count, reord);
- }
- /* D-SACK. We can detect redundant retransmission
- * in S|R and plain R frames and clear it.
- * undo_retrans is decreased above, L|R frames
- * are accounted above as well.
- */
- if (dup_sack &&
- (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
- TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
- tp->retrans_out--;
- }
- }
- }
- /* Check for lost retransmit. This superb idea is
- * borrowed from "ratehalving". Event "C".
- * Later note: FACK people cheated me again 8),
- * we have to account for reordering! Ugly,
- * but should help.
- */
- if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
- struct sk_buff *skb;
- for_retrans_queue(skb, sk, tp) {
- if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
- break;
- if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
- continue;
- if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
- after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
- (IsFack(tp) ||
- !before(lost_retrans, TCP_SKB_CB(skb)->ack_seq+tp->reordering*tp->mss_cache))) {
- TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
- tp->retrans_out--;
- if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
- tp->lost_out++;
- TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
- flag |= FLAG_DATA_SACKED;
- NET_INC_STATS_BH(TCPLostRetransmit);
- }
- }
- }
- }
- tp->left_out = tp->sacked_out + tp->lost_out;
- if (reord < tp->fackets_out && tp->ca_state != TCP_CA_Loss)
- tcp_update_reordering(tp, (tp->fackets_out+1)-reord, 0);
- #if FASTRETRANS_DEBUG > 0
- BUG_TRAP((int)tp->sacked_out >= 0);
- BUG_TRAP((int)tp->lost_out >= 0);
- BUG_TRAP((int)tp->retrans_out >= 0);
- BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
- #endif
- return flag;
- }
- void tcp_clear_retrans(struct tcp_opt *tp)
- {
- tp->left_out = 0;
- tp->retrans_out = 0;
- tp->fackets_out = 0;
- tp->sacked_out = 0;
- tp->lost_out = 0;
- tp->undo_marker = 0;
- tp->undo_retrans = 0;
- }
- /* Enter Loss state. If "how" is not zero, forget all SACK information
- * and reset tags completely, otherwise preserve SACKs. If receiver
- * dropped its ofo queue, we will know this due to reneging detection.
- */
- void tcp_enter_loss(struct sock *sk, int how)
- {
- struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
- struct sk_buff *skb;
- int cnt = 0;
- /* Reduce ssthresh if it has not yet been made inside this window. */
- if (tp->ca_state <= TCP_CA_Disorder ||
- tp->snd_una == tp->high_seq ||
- (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
- tp->prior_ssthresh = tcp_current_ssthresh(tp);
- tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
- }
- tp->snd_cwnd = 1;
- tp->snd_cwnd_cnt = 0;
- tp->snd_cwnd_stamp = tcp_time_stamp;
- tcp_clear_retrans(tp);
- /* Push undo marker, if it was plain RTO and nothing
- * was retransmitted. */
- if (!how)
- tp->undo_marker = tp->snd_una;
- for_retrans_queue(skb, sk, tp) {
- cnt++;
- if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
- tp->undo_marker = 0;
- TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
- if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
- TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
- TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
- tp->lost_out++;
- } else {
- tp->sacked_out++;
- tp->fackets_out = cnt;
- }
- }
- tcp_sync_left_out(tp);
- tp->reordering = min_t(unsigned int, tp->reordering, sysctl_tcp_reordering);
- tp->ca_state = TCP_CA_Loss;
- tp->high_seq = tp->snd_nxt;
- TCP_ECN_queue_cwr(tp);
- }
- static int tcp_check_sack_reneging(struct sock *sk, struct tcp_opt *tp)
- {
- struct sk_buff *skb;
- /* If ACK arrived pointing to a remembered SACK,
- * it means that our remembered SACKs do not reflect
- * real state of receiver i.e.
- * receiver _host_ is heavily congested (or buggy).
- * Do processing similar to RTO timeout.
- */
- if ((skb = skb_peek(&sk->write_queue)) != NULL &&
- (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
- NET_INC_STATS_BH(TCPSACKReneging);
- tcp_enter_loss(sk, 1);
- tp->retransmits++;
- tcp_retransmit_skb(sk, skb_peek(&sk->write_queue));
- tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
- return 1;
- }
- return 0;
- }
- static inline int tcp_fackets_out(struct tcp_opt *tp)
- {
- return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
- }
- static inline int tcp_skb_timedout(struct tcp_opt *tp, struct sk_buff *skb)
- {
- return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
- }
- static inline int tcp_head_timedout(struct sock *sk, struct tcp_opt *tp)
- {
- return tp->packets_out && tcp_skb_timedout(tp, skb_peek(&sk->write_queue));
- }
- /* Linux NewReno/SACK/FACK/ECN state machine.
- * --------------------------------------
- *
- * "Open" Normal state, no dubious events, fast path.
- * "Disorder" In all the respects it is "Open",
- * but requires a bit more attention. It is entered when
- * we see some SACKs or dupacks. It is split of "Open"
- * mainly to move some processing from fast path to slow one.
- * "CWR" CWND was reduced due to some Congestion Notification event.
- * It can be ECN, ICMP source quench, local device congestion.
- * "Recovery" CWND was reduced, we are fast-retransmitting.
- * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
- *
- * tcp_fastretrans_alert() is entered:
- * - each incoming ACK, if state is not "Open"
- * - when arrived ACK is unusual, namely:
- * * SACK
- * * Duplicate ACK.
- * * ECN ECE.
- *
- * Counting packets in flight is pretty simple.
- *
- * in_flight = packets_out - left_out + retrans_out
- *
- * packets_out is SND.NXT-SND.UNA counted in packets.
- *
- * retrans_out is number of retransmitted segments.
- *
- * left_out is number of segments left network, but not ACKed yet.
- *
- * left_out = sacked_out + lost_out
- *
- * sacked_out: Packets, which arrived to receiver out of order
- * and hence not ACKed. With SACKs this number is simply
- * amount of SACKed data. Even without SACKs
- * it is easy to give pretty reliable estimate of this number,
- * counting duplicate ACKs.
- *
- * lost_out: Packets lost by network. TCP has no explicit
- * "loss notification" feedback from network (for now).
- * It means that this number can be only _guessed_.
- * Actually, it is the heuristics to predict lossage that
- * distinguishes different algorithms.
- *
- * F.e. after RTO, when all the queue is considered as lost,
- * lost_out = packets_out and in_flight = retrans_out.
- *
- * Essentially, we have now two algorithms counting
- * lost packets.
- *
- * FACK: It is the simplest heuristics. As soon as we decided
- * that something is lost, we decide that _all_ not SACKed
- * packets until the most forward SACK are lost. I.e.
- * lost_out = fackets_out - sacked_out and left_out = fackets_out.
- * It is absolutely correct estimate, if network does not reorder
- * packets. And it loses any connection to reality when reordering
- * takes place. We use FACK by default until reordering
- * is suspected on the path to this destination.
- *
- * NewReno: when Recovery is entered, we assume that one segment
- * is lost (classic Reno). While we are in Recovery and
- * a partial ACK arrives, we assume that one more packet
- * is lost (NewReno). This heuristics are the same in NewReno
- * and SACK.
- *
- * Imagine, that's all! Forget about all this shamanism about CWND inflation
- * deflation etc. CWND is real congestion window, never inflated, changes
- * only according to classic VJ rules.
- *
- * Really tricky (and requiring careful tuning) part of algorithm
- * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
- * The first determines the moment _when_ we should reduce CWND and,
- * hence, slow down forward transmission. In fact, it determines the moment
- * when we decide that hole is caused by loss, rather than by a reorder.
- *
- * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
- * holes, caused by lost packets.
- *
- * And the most logically complicated part of algorithm is undo
- * heuristics. We detect false retransmits due to both too early
- * fast retransmit (reordering) and underestimated RTO, analyzing
- * timestamps and D-SACKs. When we detect that some segments were
- * retransmitted by mistake and CWND reduction was wrong, we undo
- * window reduction and abort recovery phase. This logic is hidden
- * inside several functions named tcp_try_undo_<something>.
- */
- /* This function decides, when we should leave Disordered state
- * and enter Recovery phase, reducing congestion window.
- *
- * Main question: may we further continue forward transmission
- * with the same cwnd?
- */
- static int
- tcp_time_to_recover(struct sock *sk, struct tcp_opt *tp)
- {
- /* Trick#1: The loss is proven. */
- if (tp->lost_out)
- return 1;
- /* Not-A-Trick#2 : Classic rule... */
- if (tcp_fackets_out(tp) > tp->reordering)
- return 1;
- /* Trick#3 : when we use RFC2988 timer restart, fast
- * retransmit can be triggered by timeout of queue head.
- */
- if (tcp_head_timedout(sk, tp))
- return 1;
- /* Trick#4: It is still not OK... But will it be useful to delay
- * recovery more?
- */
- if (tp->packets_out <= tp->reordering &&
- tp->sacked_out >= max_t(__u32, tp->packets_out/2, sysctl_tcp_reordering) &&
- !tcp_may_send_now(sk, tp)) {
- /* We have nothing to send. This connection is limited
- * either by receiver window or by application.
- */
- return 1;
- }
- return 0;
- }
- /* If we receive more dupacks than we expected counting segments
- * in assumption of absent reordering, interpret this as reordering.
- * The only another reason could be bug in receiver TCP.
- */
- static void tcp_check_reno_reordering(struct tcp_opt *tp, int addend)
- {
- u32 holes;
- holes = max(tp->lost_out, 1U);
- holes = min(holes, tp->packets_out);
- if (tp->sacked_out + holes > tp->packets_out) {
- tp->sacked_out = tp->packets_out - holes;
- tcp_update_reordering(tp, tp->packets_out+addend, 0);
- }
- }
- /* Emulate SACKs for SACKless connection: account for a new dupack. */
- static void tcp_add_reno_sack(struct tcp_opt *tp)
- {
- ++tp->sacked_out;
- tcp_check_reno_reordering(tp, 0);
- tcp_sync_left_out(tp);
- }
- /* Account for ACK, ACKing some data in Reno Recovery phase. */
- static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_opt *tp, int acked)
- {
- if (acked > 0) {
- /* One ACK acked hole. The rest eat duplicate ACKs. */
- if (acked-1 >= tp->sacked_out)
- tp->sacked_out = 0;
- else
- tp->sacked_out -= acked-1;
- }
- tcp_check_reno_reordering(tp, acked);
- tcp_sync_left_out(tp);
- }
- static inline void tcp_reset_reno_sack(struct tcp_opt *tp)
- {
- tp->sacked_out = 0;
- tp->left_out = tp->lost_out;
- }
- /* Mark head of queue up as lost. */
- static void
- tcp_mark_head_lost(struct sock *sk, struct tcp_opt *tp, int packets, u32 high_seq)
- {
- struct sk_buff *skb;
- int cnt = packets;
- BUG_TRAP(cnt <= tp->packets_out);
- for_retrans_queue(skb, sk, tp) {
- if (--cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
- break;
- if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
- TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
- tp->lost_out++;
- }
- }
- tcp_sync_left_out(tp);
- }
- /* Account newly detected lost packet(s) */
- static void tcp_update_scoreboard(struct sock *sk, struct tcp_opt *tp)
- {
- if (IsFack(tp)) {
- int lost = tp->fackets_out - tp->reordering;
- if (lost <= 0)
- lost = 1;
- tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
- } else {
- tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
- }
- /* New heuristics: it is possible only after we switched
- * to restart timer each time when something is ACKed.
- * Hence, we can detect timed out packets during fast
- * retransmit without falling to slow start.
- */
- if (tcp_head_timedout(sk, tp)) {
- struct sk_buff *skb;
- for_retrans_queue(skb, sk, tp) {
- if (tcp_skb_timedout(tp, skb) &&
- !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
- TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
- tp->lost_out++;
- }
- }
- tcp_sync_left_out(tp);
- }
- }
- /* CWND moderation, preventing bursts due to too big ACKs
- * in dubious situations.
- */
- static __inline__ void tcp_moderate_cwnd(struct tcp_opt *tp)
- {
- tp->snd_cwnd = min(tp->snd_cwnd,
- tcp_packets_in_flight(tp)+tcp_max_burst(tp));
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- /* Decrease cwnd each second ack. */
- static void tcp_cwnd_down(struct tcp_opt *tp)
- {
- int decr = tp->snd_cwnd_cnt + 1;
- tp->snd_cwnd_cnt = decr&1;
- decr >>= 1;
- if (decr && tp->snd_cwnd > tp->snd_ssthresh/2)
- tp->snd_cwnd -= decr;
- tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- /* Nothing was retransmitted or returned timestamp is less
- * than timestamp of the first retransmission.
- */
- static __inline__ int tcp_packet_delayed(struct tcp_opt *tp)
- {
- return !tp->retrans_stamp ||
- (tp->saw_tstamp && tp->rcv_tsecr &&
- (__s32)(tp->rcv_tsecr - tp->retrans_stamp) < 0);
- }
- /* Undo procedures. */
- #if FASTRETRANS_DEBUG > 1
- static void DBGUNDO(struct sock *sk, struct tcp_opt *tp, const char *msg)
- {
- printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%un",
- msg,
- NIPQUAD(sk->daddr), ntohs(sk->dport),
- tp->snd_cwnd, tp->left_out,
- tp->snd_ssthresh, tp->prior_ssthresh, tp->packets_out);
- }
- #else
- #define DBGUNDO(x...) do { } while (0)
- #endif
- static void tcp_undo_cwr(struct tcp_opt *tp, int undo)
- {
- if (tp->prior_ssthresh) {
- tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
- if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
- tp->snd_ssthresh = tp->prior_ssthresh;
- TCP_ECN_withdraw_cwr(tp);
- }
- } else {
- tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
- }
- tcp_moderate_cwnd(tp);
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- static inline int tcp_may_undo(struct tcp_opt *tp)
- {
- return tp->undo_marker &&
- (!tp->undo_retrans || tcp_packet_delayed(tp));
- }
- /* People celebrate: "We love our President!" */
- static int tcp_try_undo_recovery(struct sock *sk, struct tcp_opt *tp)
- {
- if (tcp_may_undo(tp)) {
- /* Happy end! We did not retransmit anything
- * or our original transmission succeeded.
- */
- DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
- tcp_undo_cwr(tp, 1);
- if (tp->ca_state == TCP_CA_Loss)
- NET_INC_STATS_BH(TCPLossUndo);
- else
- NET_INC_STATS_BH(TCPFullUndo);
- tp->undo_marker = 0;
- }
- if (tp->snd_una == tp->high_seq && IsReno(tp)) {
- /* Hold old state until something *above* high_seq
- * is ACKed. For Reno it is MUST to prevent false
- * fast retransmits (RFC2582). SACK TCP is safe. */
- tcp_moderate_cwnd(tp);
- return 1;
- }
- tp->ca_state = TCP_CA_Open;
- return 0;
- }
- /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
- static void tcp_try_undo_dsack(struct sock *sk, struct tcp_opt *tp)
- {
- if (tp->undo_marker && !tp->undo_retrans) {
- DBGUNDO(sk, tp, "D-SACK");
- tcp_undo_cwr(tp, 1);
- tp->undo_marker = 0;
- NET_INC_STATS_BH(TCPDSACKUndo);
- }
- }
- /* Undo during fast recovery after partial ACK. */
- static int tcp_try_undo_partial(struct sock *sk, struct tcp_opt *tp, int acked)
- {
- /* Partial ACK arrived. Force Hoe's retransmit. */
- int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
- if (tcp_may_undo(tp)) {
- /* Plain luck! Hole if filled with delayed
- * packet, rather than with a retransmit.
- */
- if (tp->retrans_out == 0)
- tp->retrans_stamp = 0;
- tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
- DBGUNDO(sk, tp, "Hoe");
- tcp_undo_cwr(tp, 0);
- NET_INC_STATS_BH(TCPPartialUndo);
- /* So... Do not make Hoe's retransmit yet.
- * If the first packet was delayed, the rest
- * ones are most probably delayed as well.
- */
- failed = 0;
- }
- return failed;
- }
- /* Undo during loss recovery after partial ACK. */
- static int tcp_try_undo_loss(struct sock *sk, struct tcp_opt *tp)
- {
- if (tcp_may_undo(tp)) {
- struct sk_buff *skb;
- for_retrans_queue(skb, sk, tp) {
- TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
- }
- DBGUNDO(sk, tp, "partial loss");
- tp->lost_out = 0;
- tp->left_out = tp->sacked_out;
- tcp_undo_cwr(tp, 1);
- NET_INC_STATS_BH(TCPLossUndo);
- tp->retransmits = 0;
- tp->undo_marker = 0;
- if (!IsReno(tp))
- tp->ca_state = TCP_CA_Open;
- return 1;
- }
- return 0;
- }
- static __inline__ void tcp_complete_cwr(struct tcp_opt *tp)
- {
- tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- static void tcp_try_to_open(struct sock *sk, struct tcp_opt *tp, int flag)
- {
- tp->left_out = tp->sacked_out;
- if (tp->retrans_out == 0)
- tp->retrans_stamp = 0;
- if (flag&FLAG_ECE)
- tcp_enter_cwr(tp);
- if (tp->ca_state != TCP_CA_CWR) {
- int state = TCP_CA_Open;
- if (tp->left_out ||
- tp->retrans_out ||
- tp->undo_marker)
- state = TCP_CA_Disorder;
- if (tp->ca_state != state) {
- tp->ca_state = state;
- tp->high_seq = tp->snd_nxt;
- }
- tcp_moderate_cwnd(tp);
- } else {
- tcp_cwnd_down(tp);
- }
- }
- /* Process an event, which can update packets-in-flight not trivially.
- * Main goal of this function is to calculate new estimate for left_out,
- * taking into account both packets sitting in receiver's buffer and
- * packets lost by network.
- *
- * Besides that it does CWND reduction, when packet loss is detected
- * and changes state of machine.
- *
- * It does _not_ decide what to send, it is made in function
- * tcp_xmit_retransmit_queue().
- */
- static void
- tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
- int prior_packets, int flag)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
- /* Some technical things:
- * 1. Reno does not count dupacks (sacked_out) automatically. */
- if (!tp->packets_out)
- tp->sacked_out = 0;
- /* 2. SACK counts snd_fack in packets inaccurately. */
- if (tp->sacked_out == 0)
- tp->fackets_out = 0;
- /* Now state machine starts.
- * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
- if (flag&FLAG_ECE)
- tp->prior_ssthresh = 0;
- /* B. In all the states check for reneging SACKs. */
- if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
- return;
- /* C. Process data loss notification, provided it is valid. */
- if ((flag&FLAG_DATA_LOST) &&
- before(tp->snd_una, tp->high_seq) &&
- tp->ca_state != TCP_CA_Open &&
- tp->fackets_out > tp->reordering) {
- tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
- NET_INC_STATS_BH(TCPLoss);
- }
- /* D. Synchronize left_out to current state. */
- tcp_sync_left_out(tp);
- /* E. Check state exit conditions. State can be terminated
- * when high_seq is ACKed. */
- if (tp->ca_state == TCP_CA_Open) {
- BUG_TRAP(tp->retrans_out == 0);
- tp->retrans_stamp = 0;
- } else if (!before(tp->snd_una, tp->high_seq)) {
- switch (tp->ca_state) {
- case TCP_CA_Loss:
- tp->retransmits = 0;
- if (tcp_try_undo_recovery(sk, tp))
- return;
- break;
- case TCP_CA_CWR:
- /* CWR is to be held something *above* high_seq
- * is ACKed for CWR bit to reach receiver. */
- if (tp->snd_una != tp->high_seq) {
- tcp_complete_cwr(tp);
- tp->ca_state = TCP_CA_Open;
- }
- break;
- case TCP_CA_Disorder:
- tcp_try_undo_dsack(sk, tp);
- if (!tp->undo_marker ||
- /* For SACK case do not Open to allow to undo
- * catching for all duplicate ACKs. */
- IsReno(tp) || tp->snd_una != tp->high_seq) {
- tp->undo_marker = 0;
- tp->ca_state = TCP_CA_Open;
- }
- break;
- case TCP_CA_Recovery:
- if (IsReno(tp))
- tcp_reset_reno_sack(tp);
- if (tcp_try_undo_recovery(sk, tp))
- return;
- tcp_complete_cwr(tp);
- break;
- }
- }
- /* F. Process state. */
- switch (tp->ca_state) {
- case TCP_CA_Recovery:
- if (prior_snd_una == tp->snd_una) {
- if (IsReno(tp) && is_dupack)
- tcp_add_reno_sack(tp);
- } else {
- int acked = prior_packets - tp->packets_out;
- if (IsReno(tp))
- tcp_remove_reno_sacks(sk, tp, acked);
- is_dupack = tcp_try_undo_partial(sk, tp, acked);
- }
- break;
- case TCP_CA_Loss:
- if (flag&FLAG_DATA_ACKED)
- tp->retransmits = 0;
- if (!tcp_try_undo_loss(sk, tp)) {
- tcp_moderate_cwnd(tp);
- tcp_xmit_retransmit_queue(sk);
- return;
- }
- if (tp->ca_state != TCP_CA_Open)
- return;
- /* Loss is undone; fall through to processing in Open state. */
- default:
- if (IsReno(tp)) {
- if (tp->snd_una != prior_snd_una)
- tcp_reset_reno_sack(tp);
- if (is_dupack)
- tcp_add_reno_sack(tp);
- }
- if (tp->ca_state == TCP_CA_Disorder)
- tcp_try_undo_dsack(sk, tp);
- if (!tcp_time_to_recover(sk, tp)) {
- tcp_try_to_open(sk, tp, flag);
- return;
- }
- /* Otherwise enter Recovery state */
- if (IsReno(tp))
- NET_INC_STATS_BH(TCPRenoRecovery);
- else
- NET_INC_STATS_BH(TCPSackRecovery);
- tp->high_seq = tp->snd_nxt;
- tp->prior_ssthresh = 0;
- tp->undo_marker = tp->snd_una;
- tp->undo_retrans = tp->retrans_out;
- if (tp->ca_state < TCP_CA_CWR) {
- if (!(flag&FLAG_ECE))
- tp->prior_ssthresh = tcp_current_ssthresh(tp);
- tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
- TCP_ECN_queue_cwr(tp);
- }
- tp->snd_cwnd_cnt = 0;
- tp->ca_state = TCP_CA_Recovery;
- }
- if (is_dupack || tcp_head_timedout(sk, tp))
- tcp_update_scoreboard(sk, tp);
- tcp_cwnd_down(tp);
- tcp_xmit_retransmit_queue(sk);
- }
- /* Read draft-ietf-tcplw-high-performance before mucking
- * with this code. (Superceeds RFC1323)
- */
- static void tcp_ack_saw_tstamp(struct tcp_opt *tp, int flag)
- {
- __u32 seq_rtt;
- /* RTTM Rule: A TSecr value received in a segment is used to
- * update the averaged RTT measurement only if the segment
- * acknowledges some new data, i.e., only if it advances the
- * left edge of the send window.
- *
- * See draft-ietf-tcplw-high-performance-00, section 3.3.
- * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
- *
- * Changed: reset backoff as soon as we see the first valid sample.
- * If we do not, we get strongly overstimated rto. With timestamps
- * samples are accepted even from very old segments: f.e., when rtt=1
- * increases to 8, we retransmit 5 times and after 8 seconds delayed
- * answer arrives rto becomes 120 seconds! If at least one of segments
- * in window is lost... Voila. --ANK (010210)
- */
- seq_rtt = tcp_time_stamp - tp->rcv_tsecr;
- tcp_rtt_estimator(tp, seq_rtt);
- tcp_set_rto(tp);
- tp->backoff = 0;
- tcp_bound_rto(tp);
- }
- static void tcp_ack_no_tstamp(struct tcp_opt *tp, u32 seq_rtt, int flag)
- {
- /* We don't have a timestamp. Can only use
- * packets that are not retransmitted to determine
- * rtt estimates. Also, we must not reset the
- * backoff for rto until we get a non-retransmitted
- * packet. This allows us to deal with a situation
- * where the network delay has increased suddenly.
- * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
- */
- if (flag & FLAG_RETRANS_DATA_ACKED)
- return;
- tcp_rtt_estimator(tp, seq_rtt);
- tcp_set_rto(tp);
- tp->backoff = 0;
- tcp_bound_rto(tp);
- }
- static __inline__ void
- tcp_ack_update_rtt(struct tcp_opt *tp, int flag, s32 seq_rtt)
- {
- /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
- if (tp->saw_tstamp && tp->rcv_tsecr)
- tcp_ack_saw_tstamp(tp, flag);
- else if (seq_rtt >= 0)
- tcp_ack_no_tstamp(tp, seq_rtt, flag);
- }
- /* This is Jacobson's slow start and congestion avoidance.
- * SIGCOMM '88, p. 328.
- */
- static __inline__ void tcp_cong_avoid(struct tcp_opt *tp)
- {
- if (tp->snd_cwnd <= tp->snd_ssthresh) {
- /* In "safe" area, increase. */
- if (tp->snd_cwnd < tp->snd_cwnd_clamp)
- tp->snd_cwnd++;
- } else {
- /* In dangerous area, increase slowly.
- * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
- */
- if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
- if (tp->snd_cwnd < tp->snd_cwnd_clamp)
- tp->snd_cwnd++;
- tp->snd_cwnd_cnt=0;
- } else
- tp->snd_cwnd_cnt++;
- }
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- /* Restart timer after forward progress on connection.
- * RFC2988 recommends to restart timer to now+rto.
- */
- static __inline__ void tcp_ack_packets_out(struct sock *sk, struct tcp_opt *tp)
- {
- if (tp->packets_out==0) {
- tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
- } else {
- tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
- }
- }
- /* Remove acknowledged frames from the retransmission queue. */
- static int tcp_clean_rtx_queue(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- struct sk_buff *skb;
- __u32 now = tcp_time_stamp;
- int acked = 0;
- __s32 seq_rtt = -1;
- while((skb=skb_peek(&sk->write_queue)) && (skb != tp->send_head)) {
- struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
- __u8 sacked = scb->sacked;
- /* If our packet is before the ack sequence we can
- * discard it as it's confirmed to have arrived at
- * the other end.
- */
- if (after(scb->end_seq, tp->snd_una))
- break;
- /* Initial outgoing SYN's get put onto the write_queue
- * just like anything else we transmit. It is not
- * true data, and if we misinform our callers that
- * this ACK acks real data, we will erroneously exit
- * connection startup slow start one packet too
- * quickly. This is severely frowned upon behavior.
- */
- if(!(scb->flags & TCPCB_FLAG_SYN)) {
- acked |= FLAG_DATA_ACKED;
- } else {
- acked |= FLAG_SYN_ACKED;
- tp->retrans_stamp = 0;
- }
- if (sacked) {
- if(sacked & TCPCB_RETRANS) {
- if(sacked & TCPCB_SACKED_RETRANS)
- tp->retrans_out--;
- acked |= FLAG_RETRANS_DATA_ACKED;
- seq_rtt = -1;
- } else if (seq_rtt < 0)
- seq_rtt = now - scb->when;
- if(sacked & TCPCB_SACKED_ACKED)
- tp->sacked_out--;
- if(sacked & TCPCB_LOST)
- tp->lost_out--;
- if(sacked & TCPCB_URG) {
- if (tp->urg_mode &&
- !before(scb->end_seq, tp->snd_up))
- tp->urg_mode = 0;
- }
- } else if (seq_rtt < 0)
- seq_rtt = now - scb->when;
- if(tp->fackets_out)
- tp->fackets_out--;
- tp->packets_out--;
- __skb_unlink(skb, skb->list);
- tcp_free_skb(sk, skb);
- }
- if (acked&FLAG_ACKED) {
- tcp_ack_update_rtt(tp, acked, seq_rtt);
- tcp_ack_packets_out(sk, tp);
- }
- #if FASTRETRANS_DEBUG > 0
- BUG_TRAP((int)tp->sacked_out >= 0);
- BUG_TRAP((int)tp->lost_out >= 0);
- BUG_TRAP((int)tp->retrans_out >= 0);
- if (tp->packets_out==0 && tp->sack_ok) {
- if (tp->lost_out) {
- printk(KERN_DEBUG "Leak l=%u %dn", tp->lost_out, tp->ca_state);
- tp->lost_out = 0;
- }
- if (tp->sacked_out) {
- printk(KERN_DEBUG "Leak s=%u %dn", tp->sacked_out, tp->ca_state);
- tp->sacked_out = 0;
- }
- if (tp->retrans_out) {
- printk(KERN_DEBUG "Leak r=%u %dn", tp->retrans_out, tp->ca_state);
- tp->retrans_out = 0;
- }
- }
- #endif
- return acked;
- }
- static void tcp_ack_probe(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- /* Was it a usable window open? */
- if (!after(TCP_SKB_CB(tp->send_head)->end_seq, tp->snd_una + tp->snd_wnd)) {
- tp->backoff = 0;
- tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
- /* Socket must be waked up by subsequent tcp_data_snd_check().
- * This function is not for random using!
- */
- } else {
- tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
- min(tp->rto << tp->backoff, TCP_RTO_MAX));
- }
- }
- static __inline__ int tcp_ack_is_dubious(struct tcp_opt *tp, int flag)
- {
- return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
- tp->ca_state != TCP_CA_Open);
- }
- static __inline__ int tcp_may_raise_cwnd(struct tcp_opt *tp, int flag)
- {
- return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
- !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
- }
- /* Check that window update is acceptable.
- * The function assumes that snd_una<=ack<=snd_next.
- */
- static __inline__ int
- tcp_may_update_window(struct tcp_opt *tp, u32 ack, u32 ack_seq, u32 nwin)
- {
- return (after(ack, tp->snd_una) ||
- after(ack_seq, tp->snd_wl1) ||
- (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
- }
- /* Update our send window.
- *
- * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
- * and in FreeBSD. NetBSD's one is even worse.) is wrong.
- */
- static int tcp_ack_update_window(struct sock *sk, struct tcp_opt *tp,
- struct sk_buff *skb, u32 ack, u32 ack_seq)
- {
- int flag = 0;
- u32 nwin = ntohs(skb->h.th->window) << tp->snd_wscale;
- if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
- flag |= FLAG_WIN_UPDATE;
- tcp_update_wl(tp, ack, ack_seq);
- if (tp->snd_wnd != nwin) {
- tp->snd_wnd = nwin;
- /* Note, it is the only place, where
- * fast path is recovered for sending TCP.
- */
- tcp_fast_path_check(sk, tp);
- if (nwin > tp->max_window) {
- tp->max_window = nwin;
- tcp_sync_mss(sk, tp->pmtu_cookie);
- }
- }
- }
- tp->snd_una = ack;
- return flag;
- }
- /* This routine deals with incoming acks, but not outgoing ones. */
- static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- u32 prior_snd_una = tp->snd_una;
- u32 ack_seq = TCP_SKB_CB(skb)->seq;
- u32 ack = TCP_SKB_CB(skb)->ack_seq;
- u32 prior_in_flight;
- int prior_packets;
- /* If the ack is newer than sent or older than previous acks
- * then we can probably ignore it.
- */
- if (after(ack, tp->snd_nxt))
- goto uninteresting_ack;
- if (before(ack, prior_snd_una))
- goto old_ack;
- if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
- /* Window is constant, pure forward advance.
- * No more checks are required.
- * Note, we use the fact that SND.UNA>=SND.WL2.
- */
- tcp_update_wl(tp, ack, ack_seq);
- tp->snd_una = ack;
- flag |= FLAG_WIN_UPDATE;
- NET_INC_STATS_BH(TCPHPAcks);
- } else {
- if (ack_seq != TCP_SKB_CB(skb)->end_seq)
- flag |= FLAG_DATA;
- else
- NET_INC_STATS_BH(TCPPureAcks);
- flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
- if (TCP_SKB_CB(skb)->sacked)
- flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
- if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
- flag |= FLAG_ECE;
- }
- /* We passed data and got it acked, remove any soft error
- * log. Something worked...
- */
- sk->err_soft = 0;
- tp->rcv_tstamp = tcp_time_stamp;
- if ((prior_packets = tp->packets_out) == 0)
- goto no_queue;
- prior_in_flight = tcp_packets_in_flight(tp);
- /* See if we can take anything off of the retransmit queue. */
- flag |= tcp_clean_rtx_queue(sk);
- if (tcp_ack_is_dubious(tp, flag)) {
- /* Advanve CWND, if state allows this. */
- if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->snd_cwnd &&
- tcp_may_raise_cwnd(tp, flag))
- tcp_cong_avoid(tp);
- tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
- } else {
- if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->snd_cwnd)
- tcp_cong_avoid(tp);
- }
- if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
- dst_confirm(sk->dst_cache);
- return 1;
- no_queue:
- tp->probes_out = 0;
- /* If this ack opens up a zero window, clear backoff. It was
- * being used to time the probes, and is probably far higher than
- * it needs to be for normal retransmission.
- */
- if (tp->send_head)
- tcp_ack_probe(sk);
- return 1;
- old_ack:
- if (TCP_SKB_CB(skb)->sacked)
- tcp_sacktag_write_queue(sk, skb, prior_snd_una);
- uninteresting_ack:
- SOCK_DEBUG(sk, "Ack %u out of %u:%un", ack, tp->snd_una, tp->snd_nxt);
- return 0;
- }
- /* Look for tcp options. Normally only called on SYN and SYNACK packets.
- * But, this can also be called on packets in the established flow when
- * the fast version below fails.
- */
- void tcp_parse_options(struct sk_buff *skb, struct tcp_opt *tp, int estab)
- {
- unsigned char *ptr;
- struct tcphdr *th = skb->h.th;
- int length=(th->doff*4)-sizeof(struct tcphdr);
- ptr = (unsigned char *)(th + 1);
- tp->saw_tstamp = 0;
- while(length>0) {
- int opcode=*ptr++;
- int opsize;
- switch (opcode) {
- case TCPOPT_EOL:
- return;
- case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
- length--;
- continue;
- default:
- opsize=*ptr++;
- if (opsize < 2) /* "silly options" */
- return;
- if (opsize > length)
- return; /* don't parse partial options */
- switch(opcode) {
- case TCPOPT_MSS:
- if(opsize==TCPOLEN_MSS && th->syn && !estab) {
- u16 in_mss = ntohs(*(__u16 *)ptr);
- if (in_mss) {
- if (tp->user_mss && tp->user_mss < in_mss)
- in_mss = tp->user_mss;
- tp->mss_clamp = in_mss;
- }
- }
- break;
- case TCPOPT_WINDOW:
- if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
- if (sysctl_tcp_window_scaling) {
- tp->wscale_ok = 1;
- tp->snd_wscale = *(__u8 *)ptr;
- if(tp->snd_wscale > 14) {
- if(net_ratelimit())
- printk("tcp_parse_options: Illegal window "
- "scaling value %d >14 received.",
- tp->snd_wscale);
- tp->snd_wscale = 14;
- }
- }
- break;
- case TCPOPT_TIMESTAMP:
- if(opsize==TCPOLEN_TIMESTAMP) {
- if ((estab && tp->tstamp_ok) ||
- (!estab && sysctl_tcp_timestamps)) {
- tp->saw_tstamp = 1;
- tp->rcv_tsval = ntohl(*(__u32 *)ptr);
- tp->rcv_tsecr = ntohl(*(__u32 *)(ptr+4));
- }
- }
- break;
- case TCPOPT_SACK_PERM:
- if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
- if (sysctl_tcp_sack) {
- tp->sack_ok = 1;
- tcp_sack_reset(tp);
- }
- }
- break;
- case TCPOPT_SACK:
- if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
- !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
- tp->sack_ok) {
- TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
- }
- };
- ptr+=opsize-2;
- length-=opsize;
- };
- }
- }
- /* Fast parse options. This hopes to only see timestamps.
- * If it is wrong it falls back on tcp_parse_options().
- */
- static __inline__ int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, struct tcp_opt *tp)
- {
- if (th->doff == sizeof(struct tcphdr)>>2) {
- tp->saw_tstamp = 0;
- return 0;
- } else if (tp->tstamp_ok &&
- th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
- __u32 *ptr = (__u32 *)(th + 1);
- if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
- | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
- tp->saw_tstamp = 1;
- ++ptr;
- tp->rcv_tsval = ntohl(*ptr);
- ++ptr;
- tp->rcv_tsecr = ntohl(*ptr);
- return 1;
- }
- }
- tcp_parse_options(skb, tp, 1);
- return 1;
- }
- extern __inline__ void
- tcp_store_ts_recent(struct tcp_opt *tp)
- {
- tp->ts_recent = tp->rcv_tsval;
- tp->ts_recent_stamp = xtime.tv_sec;
- }
- extern __inline__ void
- tcp_replace_ts_recent(struct tcp_opt *tp, u32 seq)
- {
- if (tp->saw_tstamp && !after(seq, tp->rcv_wup)) {
- /* PAWS bug workaround wrt. ACK frames, the PAWS discard
- * extra check below makes sure this can only happen
- * for pure ACK frames. -DaveM
- *
- * Not only, also it occurs for expired timestamps.
- */
- if((s32)(tp->rcv_tsval - tp->ts_recent) >= 0 ||
- xtime.tv_sec >= tp->ts_recent_stamp + TCP_PAWS_24DAYS)
- tcp_store_ts_recent(tp);
- }
- }
- /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
- *
- * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
- * it can pass through stack. So, the following predicate verifies that
- * this segment is not used for anything but congestion avoidance or
- * fast retransmit. Moreover, we even are able to eliminate most of such
- * second order effects, if we apply some small "replay" window (~RTO)
- * to timestamp space.
- *
- * All these measures still do not guarantee that we reject wrapped ACKs
- * on networks with high bandwidth, when sequence space is recycled fastly,
- * but it guarantees that such events will be very rare and do not affect
- * connection seriously. This doesn't look nice, but alas, PAWS is really
- * buggy extension.
- *
- * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
- * states that events when retransmit arrives after original data are rare.
- * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
- * the biggest problem on large power networks even with minor reordering.
- * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
- * up to bandwidth of 18Gigabit/sec. 8) ]
- */
- static int tcp_disordered_ack(struct tcp_opt *tp, struct sk_buff *skb)
- {
- struct tcphdr *th = skb->h.th;
- u32 seq = TCP_SKB_CB(skb)->seq;
- u32 ack = TCP_SKB_CB(skb)->ack_seq;
- return (/* 1. Pure ACK with correct sequence number. */
- (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
- /* 2. ... and duplicate ACK. */
- ack == tp->snd_una &&
- /* 3. ... and does not update window. */
- !tcp_may_update_window(tp, ack, seq, ntohs(th->window)<<tp->snd_wscale) &&
- /* 4. ... and sits in replay window. */
- (s32)(tp->ts_recent - tp->rcv_tsval) <= (tp->rto*1024)/HZ);
- }
- extern __inline__ int tcp_paws_discard(struct tcp_opt *tp, struct sk_buff *skb)
- {
- return ((s32)(tp->ts_recent - tp->rcv_tsval) > TCP_PAWS_WINDOW &&
- xtime.tv_sec < tp->ts_recent_stamp + TCP_PAWS_24DAYS &&
- !tcp_disordered_ack(tp, skb));
- }
- /* Check segment sequence number for validity.
- *
- * Segment controls are considered valid, if the segment
- * fits to the window after truncation to the window. Acceptability
- * of data (and SYN, FIN, of course) is checked separately.
- * See tcp_data_queue(), for example.
- *
- * Also, controls (RST is main one) are accepted using RCV.WUP instead
- * of RCV.NXT. Peer still did not advance his SND.UNA when we
- * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
- * (borrowed from freebsd)
- */
- static inline int tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq)
- {
- return !before(end_seq, tp->rcv_wup) &&
- !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
- }
- /* When we get a reset we do this. */
- static void tcp_reset(struct sock *sk)
- {
- /* We want the right error as BSD sees it (and indeed as we do). */
- switch (sk->state) {
- case TCP_SYN_SENT:
- sk->err = ECONNREFUSED;
- break;
- case TCP_CLOSE_WAIT:
- sk->err = EPIPE;
- break;
- case TCP_CLOSE:
- return;
- default:
- sk->err = ECONNRESET;
- }
- if (!sk->dead)
- sk->error_report(sk);
- tcp_done(sk);
- }
- /*
- * Process the FIN bit. This now behaves as it is supposed to work
- * and the FIN takes effect when it is validly part of sequence
- * space. Not before when we get holes.
- *
- * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
- * (and thence onto LAST-ACK and finally, CLOSE, we never enter
- * TIME-WAIT)
- *
- * If we are in FINWAIT-1, a received FIN indicates simultaneous
- * close and we go into CLOSING (and later onto TIME-WAIT)
- *
- * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
- */
- static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- tcp_schedule_ack(tp);
- sk->shutdown |= RCV_SHUTDOWN;
- sk->done = 1;
- switch(sk->state) {
- case TCP_SYN_RECV:
- case TCP_ESTABLISHED:
- /* Move to CLOSE_WAIT */
- tcp_set_state(sk, TCP_CLOSE_WAIT);
- tp->ack.pingpong = 1;
- break;
- case TCP_CLOSE_WAIT:
- case TCP_CLOSING:
- /* Received a retransmission of the FIN, do
- * nothing.
- */
- break;
- case TCP_LAST_ACK:
- /* RFC793: Remain in the LAST-ACK state. */
- break;
- case TCP_FIN_WAIT1:
- /* This case occurs when a simultaneous close
- * happens, we must ack the received FIN and
- * enter the CLOSING state.
- */
- tcp_send_ack(sk);
- tcp_set_state(sk, TCP_CLOSING);
- break;
- case TCP_FIN_WAIT2:
- /* Received a FIN -- send ACK and enter TIME_WAIT. */
- tcp_send_ack(sk);
- tcp_time_wait(sk, TCP_TIME_WAIT, 0);
- break;
- default:
- /* Only TCP_LISTEN and TCP_CLOSE are left, in these
- * cases we should never reach this piece of code.
- */
- printk("tcp_fin: Impossible, sk->state=%dn", sk->state);
- break;
- };
- /* It _is_ possible, that we have something out-of-order _after_ FIN.
- * Probably, we should reset in this case. For now drop them.
- */
- __skb_queue_purge(&tp->out_of_order_queue);
- if (tp->sack_ok)
- tcp_sack_reset(tp);
- tcp_mem_reclaim(sk);
- if (!sk->dead) {
- sk->state_change(sk);
- /* Do not send POLL_HUP for half duplex close. */
- if (sk->shutdown == SHUTDOWN_MASK || sk->state == TCP_CLOSE)
- sk_wake_async(sk, 1, POLL_HUP);
- else
- sk_wake_async(sk, 1, POLL_IN);
- }
- }
- static __inline__ int
- tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
- {
- if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
- if (before(seq, sp->start_seq))
- sp->start_seq = seq;
- if (after(end_seq, sp->end_seq))
- sp->end_seq = end_seq;
- return 1;
- }
- return 0;
- }
- static __inline__ void tcp_dsack_set(struct tcp_opt *tp, u32 seq, u32 end_seq)
- {
- if (tp->sack_ok && sysctl_tcp_dsack) {
- if (before(seq, tp->rcv_nxt))
- NET_INC_STATS_BH(TCPDSACKOldSent);
- else
- NET_INC_STATS_BH(TCPDSACKOfoSent);
- tp->dsack = 1;
- tp->duplicate_sack[0].start_seq = seq;
- tp->duplicate_sack[0].end_seq = end_seq;
- tp->eff_sacks = min(tp->num_sacks+1, 4-tp->tstamp_ok);
- }
- }
- static __inline__ void tcp_dsack_extend(struct tcp_opt *tp, u32 seq, u32 end_seq)
- {
- if (!tp->dsack)
- tcp_dsack_set(tp, seq, end_seq);
- else
- tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
- }
- static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
- before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
- NET_INC_STATS_BH(DelayedACKLost);
- tcp_enter_quickack_mode(tp);
- if (tp->sack_ok && sysctl_tcp_dsack) {
- u32 end_seq = TCP_SKB_CB(skb)->end_seq;
- if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
- end_seq = tp->rcv_nxt;
- tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
- }
- }
- tcp_send_ack(sk);
- }
- /* These routines update the SACK block as out-of-order packets arrive or
- * in-order packets close up the sequence space.
- */
- static void tcp_sack_maybe_coalesce(struct tcp_opt *tp)
- {
- int this_sack;
- struct tcp_sack_block *sp = &tp->selective_acks[0];
- struct tcp_sack_block *swalk = sp+1;
- /* See if the recent change to the first SACK eats into
- * or hits the sequence space of other SACK blocks, if so coalesce.
- */
- for (this_sack = 1; this_sack < tp->num_sacks; ) {
- if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
- int i;
- /* Zap SWALK, by moving every further SACK up by one slot.
- * Decrease num_sacks.
- */
- tp->num_sacks--;
- tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
- for(i=this_sack; i < tp->num_sacks; i++)
- sp[i] = sp[i+1];
- continue;
- }
- this_sack++, swalk++;
- }
- }
- static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
- {
- __u32 tmp;
- tmp = sack1->start_seq;
- sack1->start_seq = sack2->start_seq;
- sack2->start_seq = tmp;
- tmp = sack1->end_seq;
- sack1->end_seq = sack2->end_seq;
- sack2->end_seq = tmp;
- }
- static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- struct tcp_sack_block *sp = &tp->selective_acks[0];
- int cur_sacks = tp->num_sacks;
- int this_sack;
- if (!cur_sacks)
- goto new_sack;
- for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
- if (tcp_sack_extend(sp, seq, end_seq)) {
- /* Rotate this_sack to the first one. */
- for (; this_sack>0; this_sack--, sp--)
- tcp_sack_swap(sp, sp-1);
- if (cur_sacks > 1)
- tcp_sack_maybe_coalesce(tp);
- return;
- }
- }
- /* Could not find an adjacent existing SACK, build a new one,
- * put it at the front, and shift everyone else down. We
- * always know there is at least one SACK present already here.
- *
- * If the sack array is full, forget about the last one.
- */
- if (this_sack >= 4) {
- this_sack--;
- tp->num_sacks--;
- sp--;
- }
- for(; this_sack > 0; this_sack--, sp--)
- *sp = *(sp-1);
- new_sack:
- /* Build the new head SACK, and we're done. */
- sp->start_seq = seq;
- sp->end_seq = end_seq;
- tp->num_sacks++;
- tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
- }
- /* RCV.NXT advances, some SACKs should be eaten. */
- static void tcp_sack_remove(struct tcp_opt *tp)
- {
- struct tcp_sack_block *sp = &tp->selective_acks[0];
- int num_sacks = tp->num_sacks;
- int this_sack;
- /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
- if (skb_queue_len(&tp->out_of_order_queue) == 0) {
- tp->num_sacks = 0;
- tp->eff_sacks = tp->dsack;
- return;
- }
- for(this_sack = 0; this_sack < num_sacks; ) {
- /* Check if the start of the sack is covered by RCV.NXT. */
- if (!before(tp->rcv_nxt, sp->start_seq)) {
- int i;
- /* RCV.NXT must cover all the block! */
- BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
- /* Zap this SACK, by moving forward any other SACKS. */
- for (i=this_sack+1; i < num_sacks; i++)
- tp->selective_acks[i-1] = tp->selective_acks[i];
- num_sacks--;
- continue;
- }
- this_sack++;
- sp++;
- }
- if (num_sacks != tp->num_sacks) {
- tp->num_sacks = num_sacks;
- tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
- }
- }
- /* This one checks to see if we can put data from the
- * out_of_order queue into the receive_queue.
- */
- static void tcp_ofo_queue(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- __u32 dsack_high = tp->rcv_nxt;
- struct sk_buff *skb;
- while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
- if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
- break;
- if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
- __u32 dsack = dsack_high;
- if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
- dsack_high = TCP_SKB_CB(skb)->end_seq;
- tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
- }
- if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
- SOCK_DEBUG(sk, "ofo packet was already received n");
- __skb_unlink(skb, skb->list);
- __kfree_skb(skb);
- continue;
- }
- SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %Xn",
- tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
- TCP_SKB_CB(skb)->end_seq);
- __skb_unlink(skb, skb->list);
- __skb_queue_tail(&sk->receive_queue, skb);
- tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
- if(skb->h.th->fin)
- tcp_fin(skb, sk, skb->h.th);
- }
- }
- static inline int tcp_rmem_schedule(struct sock *sk, struct sk_buff *skb)
- {
- return (int)skb->truesize <= sk->forward_alloc ||
- tcp_mem_schedule(sk, skb->truesize, 1);
- }
- static int tcp_prune_queue(struct sock *sk);
- static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
- {
- struct tcphdr *th = skb->h.th;
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int eaten = -1;
- if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
- goto drop;
- th = skb->h.th;
- __skb_pull(skb, th->doff*4);
- TCP_ECN_accept_cwr(tp, skb);
- if (tp->dsack) {
- tp->dsack = 0;
- tp->eff_sacks = min_t(unsigned int, tp->num_sacks, 4-tp->tstamp_ok);
- }
- /* Queue data for delivery to the user.
- * Packets in sequence go to the receive queue.
- * Out of sequence packets to the out_of_order_queue.
- */
- if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
- if (tcp_receive_window(tp) == 0)
- goto out_of_window;
- /* Ok. In sequence. In window. */
- if (tp->ucopy.task == current &&
- tp->copied_seq == tp->rcv_nxt &&
- tp->ucopy.len &&
- sk->lock.users &&
- !tp->urg_data) {
- int chunk = min_t(unsigned int, skb->len, tp->ucopy.len);
- __set_current_state(TASK_RUNNING);
- local_bh_enable();
- if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
- tp->ucopy.len -= chunk;
- tp->copied_seq += chunk;
- eaten = (chunk == skb->len && !th->fin);
- }
- local_bh_disable();
- }
- if (eaten <= 0) {
- queue_and_out:
- if (eaten < 0 &&
- (atomic_read(&sk->rmem_alloc) > sk->rcvbuf ||
- !tcp_rmem_schedule(sk, skb))) {
- if (tcp_prune_queue(sk) < 0 || !tcp_rmem_schedule(sk, skb))
- goto drop;
- }
- tcp_set_owner_r(skb, sk);
- __skb_queue_tail(&sk->receive_queue, skb);
- }
- tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
- if(skb->len)
- tcp_event_data_recv(sk, tp, skb);
- if(th->fin)
- tcp_fin(skb, sk, th);
- if (skb_queue_len(&tp->out_of_order_queue)) {
- tcp_ofo_queue(sk);
- /* RFC2581. 4.2. SHOULD send immediate ACK, when
- * gap in queue is filled.
- */
- if (skb_queue_len(&tp->out_of_order_queue) == 0)
- tp->ack.pingpong = 0;
- }
- if(tp->num_sacks)
- tcp_sack_remove(tp);
- tcp_fast_path_check(sk, tp);
- if (eaten > 0) {
- __kfree_skb(skb);
- } else if (!sk->dead)
- sk->data_ready(sk, 0);
- return;
- }
- if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
- /* A retransmit, 2nd most common case. Force an immediate ack. */
- NET_INC_STATS_BH(DelayedACKLost);
- tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
- out_of_window:
- tcp_enter_quickack_mode(tp);
- tcp_schedule_ack(tp);
- drop:
- __kfree_skb(skb);
- return;
- }
- /* Out of window. F.e. zero window probe. */
- if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt+tcp_receive_window(tp)))
- goto out_of_window;
- tcp_enter_quickack_mode(tp);
- if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
- /* Partial packet, seq < rcv_next < end_seq */
- SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %Xn",
- tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
- TCP_SKB_CB(skb)->end_seq);
- tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
-
- /* If window is closed, drop tail of packet. But after
- * remembering D-SACK for its head made in previous line.
- */
- if (!tcp_receive_window(tp))
- goto out_of_window;
- goto queue_and_out;
- }
- TCP_ECN_check_ce(tp, skb);
- if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf ||
- !tcp_rmem_schedule(sk, skb)) {
- if (tcp_prune_queue(sk) < 0 || !tcp_rmem_schedule(sk, skb))
- goto drop;
- }
- /* Disable header prediction. */
- tp->pred_flags = 0;
- tcp_schedule_ack(tp);
- SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %Xn",
- tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
- tcp_set_owner_r(skb, sk);
- if (skb_peek(&tp->out_of_order_queue) == NULL) {
- /* Initial out of order segment, build 1 SACK. */
- if(tp->sack_ok) {
- tp->num_sacks = 1;
- tp->dsack = 0;
- tp->eff_sacks = 1;
- tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
- tp->selective_acks[0].end_seq = TCP_SKB_CB(skb)->end_seq;
- }
- __skb_queue_head(&tp->out_of_order_queue,skb);
- } else {
- struct sk_buff *skb1=tp->out_of_order_queue.prev;
- u32 seq = TCP_SKB_CB(skb)->seq;
- u32 end_seq = TCP_SKB_CB(skb)->end_seq;
- if (seq == TCP_SKB_CB(skb1)->end_seq) {
- __skb_append(skb1, skb);
- if (tp->num_sacks == 0 ||
- tp->selective_acks[0].end_seq != seq)
- goto add_sack;
- /* Common case: data arrive in order after hole. */
- tp->selective_acks[0].end_seq = end_seq;
- return;
- }
- /* Find place to insert this segment. */
- do {
- if (!after(TCP_SKB_CB(skb1)->seq, seq))
- break;
- } while ((skb1=skb1->prev) != (struct sk_buff*)&tp->out_of_order_queue);
- /* Do skb overlap to previous one? */
- if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
- before(seq, TCP_SKB_CB(skb1)->end_seq)) {
- if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
- /* All the bits are present. Drop. */
- __kfree_skb(skb);
- tcp_dsack_set(tp, seq, end_seq);
- goto add_sack;
- }
- if (after(seq, TCP_SKB_CB(skb1)->seq)) {
- /* Partial overlap. */
- tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
- } else {
- skb1 = skb1->prev;
- }
- }
- __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
-
- /* And clean segments covered by new one as whole. */
- while ((skb1 = skb->next) != (struct sk_buff*)&tp->out_of_order_queue &&
- after(end_seq, TCP_SKB_CB(skb1)->seq)) {
- if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
- tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
- break;
- }
- __skb_unlink(skb1, skb1->list);
- tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
- __kfree_skb(skb1);
- }
- add_sack:
- if (tp->sack_ok)
- tcp_sack_new_ofo_skb(sk, seq, end_seq);
- }
- }
- /* Collapse contiguous sequence of skbs head..tail with
- * sequence numbers start..end.
- * Segments with FIN/SYN are not collapsed (only because this
- * simplifies code)
- */
- static void
- tcp_collapse(struct sock *sk, struct sk_buff *head,
- struct sk_buff *tail, u32 start, u32 end)
- {
- struct sk_buff *skb;
- /* First, check that queue is collapsable and find
- * the point where collapsing can be useful. */
- for (skb = head; skb != tail; ) {
- /* No new bits? It is possible on ofo queue. */
- if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
- struct sk_buff *next = skb->next;
- __skb_unlink(skb, skb->list);
- __kfree_skb(skb);
- NET_INC_STATS_BH(TCPRcvCollapsed);
- skb = next;
- continue;
- }
- /* The first skb to collapse is:
- * - not SYN/FIN and
- * - bloated or contains data before "start" or
- * overlaps to the next one.
- */
- if (!skb->h.th->syn && !skb->h.th->fin &&
- (tcp_win_from_space(skb->truesize) > skb->len ||
- before(TCP_SKB_CB(skb)->seq, start) ||
- (skb->next != tail &&
- TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
- break;
- /* Decided to skip this, advance start seq. */
- start = TCP_SKB_CB(skb)->end_seq;
- skb = skb->next;
- }
- if (skb == tail || skb->h.th->syn || skb->h.th->fin)
- return;
- while (before(start, end)) {
- struct sk_buff *nskb;
- int header = skb_headroom(skb);
- int copy = (PAGE_SIZE - sizeof(struct sk_buff) -
- sizeof(struct skb_shared_info) - header - 31)&~15;
- /* Too big header? This can happen with IPv6. */
- if (copy < 0)
- return;
- if (end-start < copy)
- copy = end-start;
- nskb = alloc_skb(copy+header, GFP_ATOMIC);
- if (!nskb)
- return;
- skb_reserve(nskb, header);
- memcpy(nskb->head, skb->head, header);
- nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
- nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
- nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
- memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
- TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
- __skb_insert(nskb, skb->prev, skb, skb->list);
- tcp_set_owner_r(nskb, sk);
- /* Copy data, releasing collapsed skbs. */
- while (copy > 0) {
- int offset = start - TCP_SKB_CB(skb)->seq;
- int size = TCP_SKB_CB(skb)->end_seq - start;
- if (offset < 0) BUG();
- if (size > 0) {
- size = min(copy, size);
- if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
- BUG();
- TCP_SKB_CB(nskb)->end_seq += size;
- copy -= size;
- start += size;
- }
- if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
- struct sk_buff *next = skb->next;
- __skb_unlink(skb, skb->list);
- __kfree_skb(skb);
- NET_INC_STATS_BH(TCPRcvCollapsed);
- skb = next;
- if (skb == tail || skb->h.th->syn || skb->h.th->fin)
- return;
- }
- }
- }
- }
- /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
- * and tcp_collapse() them until all the queue is collapsed.
- */
- static void tcp_collapse_ofo_queue(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
- struct sk_buff *head;
- u32 start, end;
- if (skb == NULL)
- return;
- start = TCP_SKB_CB(skb)->seq;
- end = TCP_SKB_CB(skb)->end_seq;
- head = skb;
- for (;;) {
- skb = skb->next;
- /* Segment is terminated when we see gap or when
- * we are at the end of all the queue. */
- if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
- after(TCP_SKB_CB(skb)->seq, end) ||
- before(TCP_SKB_CB(skb)->end_seq, start)) {
- tcp_collapse(sk, head, skb, start, end);
- head = skb;
- if (skb == (struct sk_buff *)&tp->out_of_order_queue)
- break;
- /* Start new segment */
- start = TCP_SKB_CB(skb)->seq;
- end = TCP_SKB_CB(skb)->end_seq;
- } else {
- if (before(TCP_SKB_CB(skb)->seq, start))
- start = TCP_SKB_CB(skb)->seq;
- if (after(TCP_SKB_CB(skb)->end_seq, end))
- end = TCP_SKB_CB(skb)->end_seq;
- }
- }
- }
- /* Reduce allocated memory if we can, trying to get
- * the socket within its memory limits again.
- *
- * Return less than zero if we should start dropping frames
- * until the socket owning process reads some of the data
- * to stabilize the situation.
- */
- static int tcp_prune_queue(struct sock *sk)
- {
- struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
- SOCK_DEBUG(sk, "prune_queue: c=%xn", tp->copied_seq);
- NET_INC_STATS_BH(PruneCalled);
- if (atomic_read(&sk->rmem_alloc) >= sk->rcvbuf)
- tcp_clamp_window(sk, tp);
- else if (tcp_memory_pressure)
- tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
- tcp_collapse_ofo_queue(sk);
- tcp_collapse(sk, sk->receive_queue.next,
- (struct sk_buff*)&sk->receive_queue,
- tp->copied_seq, tp->rcv_nxt);
- tcp_mem_reclaim(sk);
- if (atomic_read(&sk->rmem_alloc) <= sk->rcvbuf)
- return 0;
- /* Collapsing did not help, destructive actions follow.
- * This must not ever occur. */
- /* First, purge the out_of_order queue. */
- if (skb_queue_len(&tp->out_of_order_queue)) {
- net_statistics[smp_processor_id()*2].OfoPruned += skb_queue_len(&tp->out_of_order_queue);
- __skb_queue_purge(&tp->out_of_order_queue);
- /* Reset SACK state. A conforming SACK implementation will
- * do the same at a timeout based retransmit. When a connection
- * is in a sad state like this, we care only about integrity
- * of the connection not performance.
- */
- if(tp->sack_ok)
- tcp_sack_reset(tp);
- tcp_mem_reclaim(sk);
- }
- if(atomic_read(&sk->rmem_alloc) <= sk->rcvbuf)
- return 0;
- /* If we are really being abused, tell the caller to silently
- * drop receive data on the floor. It will get retransmitted
- * and hopefully then we'll have sufficient space.
- */
- NET_INC_STATS_BH(RcvPruned);
- /* Massive buffer overcommit. */
- tp->pred_flags = 0;
- return -1;
- }
- /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
- * As additional protections, we do not touch cwnd in retransmission phases,
- * and if application hit its sndbuf limit recently.
- */
- void tcp_cwnd_application_limited(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- if (tp->ca_state == TCP_CA_Open &&
- sk->socket && !test_bit(SOCK_NOSPACE, &sk->socket->flags)) {
- /* Limited by application or receiver window. */
- u32 win_used = max(tp->snd_cwnd_used, 2U);
- if (win_used < tp->snd_cwnd) {
- tp->snd_ssthresh = tcp_current_ssthresh(tp);
- tp->snd_cwnd = (tp->snd_cwnd+win_used)>>1;
- }
- tp->snd_cwnd_used = 0;
- }
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- /* When incoming ACK allowed to free some skb from write_queue,
- * we remember this event in flag tp->queue_shrunk and wake up socket
- * on the exit from tcp input handler.
- */
- static void tcp_new_space(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- if (tp->packets_out < tp->snd_cwnd &&
- !(sk->userlocks&SOCK_SNDBUF_LOCK) &&
- !tcp_memory_pressure &&
- atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
- int sndmem, demanded;
- sndmem = tp->mss_clamp+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
- demanded = max_t(unsigned int, tp->snd_cwnd, tp->reordering+1);
- sndmem *= 2*demanded;
- if (sndmem > sk->sndbuf)
- sk->sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
- tp->snd_cwnd_stamp = tcp_time_stamp;
- }
- sk->write_space(sk);
- }
- static inline void tcp_check_space(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- if (tp->queue_shrunk) {
- tp->queue_shrunk = 0;
- if (sk->socket && test_bit(SOCK_NOSPACE, &sk->socket->flags))
- tcp_new_space(sk);
- }
- }
- static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
- tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
- tcp_write_xmit(sk, tp->nonagle))
- tcp_check_probe_timer(sk, tp);
- }
- static __inline__ void tcp_data_snd_check(struct sock *sk)
- {
- struct sk_buff *skb = sk->tp_pinfo.af_tcp.send_head;
- if (skb != NULL)
- __tcp_data_snd_check(sk, skb);
- tcp_check_space(sk);
- }
- /*
- * Check if sending an ack is needed.
- */
- static __inline__ void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- /* More than one full frame received... */
- if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
- /* ... and right edge of window advances far enough.
- * (tcp_recvmsg() will send ACK otherwise). Or...
- */
- && __tcp_select_window(sk) >= tp->rcv_wnd) ||
- /* We ACK each frame or... */
- tcp_in_quickack_mode(tp) ||
- /* We have out of order data. */
- (ofo_possible &&
- skb_peek(&tp->out_of_order_queue) != NULL)) {
- /* Then ack it now */
- tcp_send_ack(sk);
- } else {
- /* Else, send delayed ack. */
- tcp_send_delayed_ack(sk);
- }
- }
- static __inline__ void tcp_ack_snd_check(struct sock *sk)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- if (!tcp_ack_scheduled(tp)) {
- /* We sent a data segment already. */
- return;
- }
- __tcp_ack_snd_check(sk, 1);
- }
- /*
- * This routine is only called when we have urgent data
- * signalled. Its the 'slow' part of tcp_urg. It could be
- * moved inline now as tcp_urg is only called from one
- * place. We handle URGent data wrong. We have to - as
- * BSD still doesn't use the correction from RFC961.
- * For 1003.1g we should support a new option TCP_STDURG to permit
- * either form (or just set the sysctl tcp_stdurg).
- */
-
- static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- u32 ptr = ntohs(th->urg_ptr);
- if (ptr && !sysctl_tcp_stdurg)
- ptr--;
- ptr += ntohl(th->seq);
- /* Ignore urgent data that we've already seen and read. */
- if (after(tp->copied_seq, ptr))
- return;
- /* Do not replay urg ptr.
- *
- * NOTE: interesting situation not covered by specs.
- * Misbehaving sender may send urg ptr, pointing to segment,
- * which we already have in ofo queue. We are not able to fetch
- * such data and will stay in TCP_URG_NOTYET until will be eaten
- * by recvmsg(). Seems, we are not obliged to handle such wicked
- * situations. But it is worth to think about possibility of some
- * DoSes using some hypothetical application level deadlock.
- */
- if (before(ptr, tp->rcv_nxt))
- return;
- /* Do we already have a newer (or duplicate) urgent pointer? */
- if (tp->urg_data && !after(ptr, tp->urg_seq))
- return;
- /* Tell the world about our new urgent pointer. */
- if (sk->proc != 0) {
- if (sk->proc > 0)
- kill_proc(sk->proc, SIGURG, 1);
- else
- kill_pg(-sk->proc, SIGURG, 1);
- sk_wake_async(sk, 3, POLL_PRI);
- }
- /* We may be adding urgent data when the last byte read was
- * urgent. To do this requires some care. We cannot just ignore
- * tp->copied_seq since we would read the last urgent byte again
- * as data, nor can we alter copied_seq until this data arrives
- * or we break the sematics of SIOCATMARK (and thus sockatmark())
- *
- * NOTE. Double Dutch. Rendering to plain English: author of comment
- * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
- * and expect that both A and B disappear from stream. This is _wrong_.
- * Though this happens in BSD with high probability, this is occasional.
- * Any application relying on this is buggy. Note also, that fix "works"
- * only in this artificial test. Insert some normal data between A and B and we will
- * decline of BSD again. Verdict: it is better to remove to trap
- * buggy users.
- */
- if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
- !sk->urginline &&
- tp->copied_seq != tp->rcv_nxt) {
- struct sk_buff *skb = skb_peek(&sk->receive_queue);
- tp->copied_seq++;
- if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
- __skb_unlink(skb, skb->list);
- __kfree_skb(skb);
- }
- }
- tp->urg_data = TCP_URG_NOTYET;
- tp->urg_seq = ptr;
- /* Disable header prediction. */
- tp->pred_flags = 0;
- }
- /* This is the 'fast' part of urgent handling. */
- static inline void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- /* Check if we get a new urgent pointer - normally not. */
- if (th->urg)
- tcp_check_urg(sk,th);
- /* Do we wait for any urgent data? - normally not... */
- if (tp->urg_data == TCP_URG_NOTYET) {
- u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff*4) - th->syn;
- /* Is the urgent pointer pointing into this packet? */
- if (ptr < skb->len) {
- u8 tmp;
- if (skb_copy_bits(skb, ptr, &tmp, 1))
- BUG();
- tp->urg_data = TCP_URG_VALID | tmp;
- if (!sk->dead)
- sk->data_ready(sk,0);
- }
- }
- }
- static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int chunk = skb->len - hlen;
- int err;
- local_bh_enable();
- if (skb->ip_summed==CHECKSUM_UNNECESSARY)
- err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
- else
- err = skb_copy_and_csum_datagram_iovec(skb, hlen, tp->ucopy.iov);
- if (!err) {
- tp->ucopy.len -= chunk;
- tp->copied_seq += chunk;
- }
- local_bh_disable();
- return err;
- }
- static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
- {
- int result;
- if (sk->lock.users) {
- local_bh_enable();
- result = __tcp_checksum_complete(skb);
- local_bh_disable();
- } else {
- result = __tcp_checksum_complete(skb);
- }
- return result;
- }
- static __inline__ int
- tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
- {
- return skb->ip_summed != CHECKSUM_UNNECESSARY &&
- __tcp_checksum_complete_user(sk, skb);
- }
- /*
- * TCP receive function for the ESTABLISHED state.
- *
- * It is split into a fast path and a slow path. The fast path is
- * disabled when:
- * - A zero window was announced from us - zero window probing
- * is only handled properly in the slow path.
- * - Out of order segments arrived.
- * - Urgent data is expected.
- * - There is no buffer space left
- * - Unexpected TCP flags/window values/header lengths are received
- * (detected by checking the TCP header against pred_flags)
- * - Data is sent in both directions. Fast path only supports pure senders
- * or pure receivers (this means either the sequence number or the ack
- * value must stay constant)
- * - Unexpected TCP option.
- *
- * When these conditions are not satisfied it drops into a standard
- * receive procedure patterned after RFC793 to handle all cases.
- * The first three cases are guaranteed by proper pred_flags setting,
- * the rest is checked inline. Fast processing is turned on in
- * tcp_data_queue when everything is OK.
- */
- int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
- struct tcphdr *th, unsigned len)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- /*
- * Header prediction.
- * The code losely follows the one in the famous
- * "30 instruction TCP receive" Van Jacobson mail.
- *
- * Van's trick is to deposit buffers into socket queue
- * on a device interrupt, to call tcp_recv function
- * on the receive process context and checksum and copy
- * the buffer to user space. smart...
- *
- * Our current scheme is not silly either but we take the
- * extra cost of the net_bh soft interrupt processing...
- * We do checksum and copy also but from device to kernel.
- */
- tp->saw_tstamp = 0;
- /* pred_flags is 0xS?10 << 16 + snd_wnd
- * if header_predition is to be made
- * 'S' will always be tp->tcp_header_len >> 2
- * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
- * turn it off (when there are holes in the receive
- * space for instance)
- * PSH flag is ignored.
- */
- if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
- TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
- int tcp_header_len = tp->tcp_header_len;
- /* Timestamp header prediction: tcp_header_len
- * is automatically equal to th->doff*4 due to pred_flags
- * match.
- */
- /* Check timestamp */
- if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
- __u32 *ptr = (__u32 *)(th + 1);
- /* No? Slow path! */
- if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
- | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
- goto slow_path;
- tp->saw_tstamp = 1;
- ++ptr;
- tp->rcv_tsval = ntohl(*ptr);
- ++ptr;
- tp->rcv_tsecr = ntohl(*ptr);
- /* If PAWS failed, check it more carefully in slow path */
- if ((s32)(tp->rcv_tsval - tp->ts_recent) < 0)
- goto slow_path;
- /* DO NOT update ts_recent here, if checksum fails
- * and timestamp was corrupted part, it will result
- * in a hung connection since we will drop all
- * future packets due to the PAWS test.
- */
- }
- if (len <= tcp_header_len) {
- /* Bulk data transfer: sender */
- if (len == tcp_header_len) {
- /* Predicted packet is in window by definition.
- * seq == rcv_nxt and rcv_wup <= rcv_nxt.
- * Hence, check seq<=rcv_wup reduces to:
- */
- if (tcp_header_len ==
- (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
- tp->rcv_nxt == tp->rcv_wup)
- tcp_store_ts_recent(tp);
- /* We know that such packets are checksummed
- * on entry.
- */
- tcp_ack(sk, skb, 0);
- __kfree_skb(skb);
- tcp_data_snd_check(sk);
- return 0;
- } else { /* Header too small */
- TCP_INC_STATS_BH(TcpInErrs);
- goto discard;
- }
- } else {
- int eaten = 0;
- if (tp->ucopy.task == current &&
- tp->copied_seq == tp->rcv_nxt &&
- len - tcp_header_len <= tp->ucopy.len &&
- sk->lock.users) {
- __set_current_state(TASK_RUNNING);
- if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
- /* Predicted packet is in window by definition.
- * seq == rcv_nxt and rcv_wup <= rcv_nxt.
- * Hence, check seq<=rcv_wup reduces to:
- */
- if (tcp_header_len ==
- (sizeof(struct tcphdr) +
- TCPOLEN_TSTAMP_ALIGNED) &&
- tp->rcv_nxt == tp->rcv_wup)
- tcp_store_ts_recent(tp);
- __skb_pull(skb, tcp_header_len);
- tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
- NET_INC_STATS_BH(TCPHPHitsToUser);
- eaten = 1;
- }
- }
- if (!eaten) {
- if (tcp_checksum_complete_user(sk, skb))
- goto csum_error;
- /* Predicted packet is in window by definition.
- * seq == rcv_nxt and rcv_wup <= rcv_nxt.
- * Hence, check seq<=rcv_wup reduces to:
- */
- if (tcp_header_len ==
- (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
- tp->rcv_nxt == tp->rcv_wup)
- tcp_store_ts_recent(tp);
- if ((int)skb->truesize > sk->forward_alloc)
- goto step5;
- NET_INC_STATS_BH(TCPHPHits);
- /* Bulk data transfer: receiver */
- __skb_pull(skb,tcp_header_len);
- __skb_queue_tail(&sk->receive_queue, skb);
- tcp_set_owner_r(skb, sk);
- tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
- }
- tcp_event_data_recv(sk, tp, skb);
- if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
- /* Well, only one small jumplet in fast path... */
- tcp_ack(sk, skb, FLAG_DATA);
- tcp_data_snd_check(sk);
- if (!tcp_ack_scheduled(tp))
- goto no_ack;
- }
- if (eaten) {
- if (tcp_in_quickack_mode(tp)) {
- tcp_send_ack(sk);
- } else {
- tcp_send_delayed_ack(sk);
- }
- } else {
- __tcp_ack_snd_check(sk, 0);
- }
- no_ack:
- if (eaten)
- __kfree_skb(skb);
- else
- sk->data_ready(sk, 0);
- return 0;
- }
- }
- slow_path:
- if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
- goto csum_error;
- /*
- * RFC1323: H1. Apply PAWS check first.
- */
- if (tcp_fast_parse_options(skb, th, tp) && tp->saw_tstamp &&
- tcp_paws_discard(tp, skb)) {
- if (!th->rst) {
- NET_INC_STATS_BH(PAWSEstabRejected);
- tcp_send_dupack(sk, skb);
- goto discard;
- }
- /* Resets are accepted even if PAWS failed.
- ts_recent update must be made after we are sure
- that the packet is in window.
- */
- }
- /*
- * Standard slow path.
- */
- if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
- /* RFC793, page 37: "In all states except SYN-SENT, all reset
- * (RST) segments are validated by checking their SEQ-fields."
- * And page 69: "If an incoming segment is not acceptable,
- * an acknowledgment should be sent in reply (unless the RST bit
- * is set, if so drop the segment and return)".
- */
- if (!th->rst)
- tcp_send_dupack(sk, skb);
- goto discard;
- }
- if(th->rst) {
- tcp_reset(sk);
- goto discard;
- }
- tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
- if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
- TCP_INC_STATS_BH(TcpInErrs);
- NET_INC_STATS_BH(TCPAbortOnSyn);
- tcp_reset(sk);
- return 1;
- }
- step5:
- if(th->ack)
- tcp_ack(sk, skb, FLAG_SLOWPATH);
- /* Process urgent data. */
- tcp_urg(sk, skb, th);
- /* step 7: process the segment text */
- tcp_data_queue(sk, skb);
- tcp_data_snd_check(sk);
- tcp_ack_snd_check(sk);
- return 0;
- csum_error:
- TCP_INC_STATS_BH(TcpInErrs);
- discard:
- __kfree_skb(skb);
- return 0;
- }
- static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
- struct tcphdr *th, unsigned len)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int saved_clamp = tp->mss_clamp;
- tcp_parse_options(skb, tp, 0);
- if (th->ack) {
- /* rfc793:
- * "If the state is SYN-SENT then
- * first check the ACK bit
- * If the ACK bit is set
- * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
- * a reset (unless the RST bit is set, if so drop
- * the segment and return)"
- *
- * We do not send data with SYN, so that RFC-correct
- * test reduces to:
- */
- if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
- goto reset_and_undo;
- if (tp->saw_tstamp && tp->rcv_tsecr &&
- !between(tp->rcv_tsecr, tp->retrans_stamp, tcp_time_stamp)) {
- NET_INC_STATS_BH(PAWSActiveRejected);
- goto reset_and_undo;
- }
- /* Now ACK is acceptable.
- *
- * "If the RST bit is set
- * If the ACK was acceptable then signal the user "error:
- * connection reset", drop the segment, enter CLOSED state,
- * delete TCB, and return."
- */
- if (th->rst) {
- tcp_reset(sk);
- goto discard;
- }
- /* rfc793:
- * "fifth, if neither of the SYN or RST bits is set then
- * drop the segment and return."
- *
- * See note below!
- * --ANK(990513)
- */
- if (!th->syn)
- goto discard_and_undo;
- /* rfc793:
- * "If the SYN bit is on ...
- * are acceptable then ...
- * (our SYN has been ACKed), change the connection
- * state to ESTABLISHED..."
- */
- TCP_ECN_rcv_synack(tp, th);
- tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
- tcp_ack(sk, skb, FLAG_SLOWPATH);
- /* Ok.. it's good. Set up sequence numbers and
- * move to established.
- */
- tp->rcv_nxt = TCP_SKB_CB(skb)->seq+1;
- tp->rcv_wup = TCP_SKB_CB(skb)->seq+1;
- /* RFC1323: The window in SYN & SYN/ACK segments is
- * never scaled.
- */
- tp->snd_wnd = ntohs(th->window);
- tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
- if (tp->wscale_ok == 0) {
- tp->snd_wscale = tp->rcv_wscale = 0;
- tp->window_clamp = min(tp->window_clamp, 65535U);
- }
- if (tp->saw_tstamp) {
- tp->tstamp_ok = 1;
- tp->tcp_header_len =
- sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
- tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
- tcp_store_ts_recent(tp);
- } else {
- tp->tcp_header_len = sizeof(struct tcphdr);
- }
- if (tp->sack_ok && sysctl_tcp_fack)
- tp->sack_ok |= 2;
- tcp_sync_mss(sk, tp->pmtu_cookie);
- tcp_initialize_rcv_mss(sk);
- tcp_init_metrics(sk);
- tcp_init_buffer_space(sk);
- if (sk->keepopen)
- tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
- if (tp->snd_wscale == 0)
- __tcp_fast_path_on(tp, tp->snd_wnd);
- else
- tp->pred_flags = 0;
- /* Remember, tcp_poll() does not lock socket!
- * Change state from SYN-SENT only after copied_seq
- * is initialized. */
- tp->copied_seq = tp->rcv_nxt;
- mb();
- tcp_set_state(sk, TCP_ESTABLISHED);
- if(!sk->dead) {
- sk->state_change(sk);
- sk_wake_async(sk, 0, POLL_OUT);
- }
- if (tp->write_pending || tp->defer_accept || tp->ack.pingpong) {
- /* Save one ACK. Data will be ready after
- * several ticks, if write_pending is set.
- *
- * It may be deleted, but with this feature tcpdumps
- * look so _wonderfully_ clever, that I was not able
- * to stand against the temptation 8) --ANK
- */
- tcp_schedule_ack(tp);
- tp->ack.lrcvtime = tcp_time_stamp;
- tp->ack.ato = TCP_ATO_MIN;
- tcp_incr_quickack(tp);
- tcp_enter_quickack_mode(tp);
- tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
- discard:
- __kfree_skb(skb);
- return 0;
- } else {
- tcp_send_ack(sk);
- }
- return -1;
- }
- /* No ACK in the segment */
- if (th->rst) {
- /* rfc793:
- * "If the RST bit is set
- *
- * Otherwise (no ACK) drop the segment and return."
- */
- goto discard_and_undo;
- }
- /* PAWS check. */
- if (tp->ts_recent_stamp && tp->saw_tstamp && tcp_paws_check(tp, 0))
- goto discard_and_undo;
- if (th->syn) {
- /* We see SYN without ACK. It is attempt of
- * simultaneous connect with crossed SYNs.
- * Particularly, it can be connect to self.
- */
- tcp_set_state(sk, TCP_SYN_RECV);
- if (tp->saw_tstamp) {
- tp->tstamp_ok = 1;
- tcp_store_ts_recent(tp);
- tp->tcp_header_len =
- sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
- } else {
- tp->tcp_header_len = sizeof(struct tcphdr);
- }
- tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
- tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
- /* RFC1323: The window in SYN & SYN/ACK segments is
- * never scaled.
- */
- tp->snd_wnd = ntohs(th->window);
- tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
- tp->max_window = tp->snd_wnd;
- tcp_sync_mss(sk, tp->pmtu_cookie);
- tcp_initialize_rcv_mss(sk);
- TCP_ECN_rcv_syn(tp, th);
- tcp_send_synack(sk);
- #if 0
- /* Note, we could accept data and URG from this segment.
- * There are no obstacles to make this.
- *
- * However, if we ignore data in ACKless segments sometimes,
- * we have no reasons to accept it sometimes.
- * Also, seems the code doing it in step6 of tcp_rcv_state_process
- * is not flawless. So, discard packet for sanity.
- * Uncomment this return to process the data.
- */
- return -1;
- #else
- goto discard;
- #endif
- }
- /* "fifth, if neither of the SYN or RST bits is set then
- * drop the segment and return."
- */
- discard_and_undo:
- tcp_clear_options(tp);
- tp->mss_clamp = saved_clamp;
- goto discard;
- reset_and_undo:
- tcp_clear_options(tp);
- tp->mss_clamp = saved_clamp;
- return 1;
- }
- /*
- * This function implements the receiving procedure of RFC 793 for
- * all states except ESTABLISHED and TIME_WAIT.
- * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
- * address independent.
- */
-
- int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
- struct tcphdr *th, unsigned len)
- {
- struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
- int queued = 0;
- tp->saw_tstamp = 0;
- switch (sk->state) {
- case TCP_CLOSE:
- goto discard;
- case TCP_LISTEN:
- if(th->ack)
- return 1;
- if(th->rst)
- goto discard;
- if(th->syn) {
- if(tp->af_specific->conn_request(sk, skb) < 0)
- return 1;
- /* Now we have several options: In theory there is
- * nothing else in the frame. KA9Q has an option to
- * send data with the syn, BSD accepts data with the
- * syn up to the [to be] advertised window and
- * Solaris 2.1 gives you a protocol error. For now
- * we just ignore it, that fits the spec precisely
- * and avoids incompatibilities. It would be nice in
- * future to drop through and process the data.
- *
- * Now that TTCP is starting to be used we ought to
- * queue this data.
- * But, this leaves one open to an easy denial of
- * service attack, and SYN cookies can't defend
- * against this problem. So, we drop the data
- * in the interest of security over speed.
- */
- goto discard;
- }
- goto discard;
- case TCP_SYN_SENT:
- queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
- if (queued >= 0)
- return queued;
- /* Do step6 onward by hand. */
- tcp_urg(sk, skb, th);
- __kfree_skb(skb);
- tcp_data_snd_check(sk);
- return 0;
- }
- if (tcp_fast_parse_options(skb, th, tp) && tp->saw_tstamp &&
- tcp_paws_discard(tp, skb)) {
- if (!th->rst) {
- NET_INC_STATS_BH(PAWSEstabRejected);
- tcp_send_dupack(sk, skb);
- goto discard;
- }
- /* Reset is accepted even if it did not pass PAWS. */
- }
- /* step 1: check sequence number */
- if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
- if (!th->rst)
- tcp_send_dupack(sk, skb);
- goto discard;
- }
- /* step 2: check RST bit */
- if(th->rst) {
- tcp_reset(sk);
- goto discard;
- }
- tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
- /* step 3: check security and precedence [ignored] */
- /* step 4:
- *
- * Check for a SYN in window.
- */
- if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
- NET_INC_STATS_BH(TCPAbortOnSyn);
- tcp_reset(sk);
- return 1;
- }
- /* step 5: check the ACK field */
- if (th->ack) {
- int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
- switch(sk->state) {
- case TCP_SYN_RECV:
- if (acceptable) {
- tp->copied_seq = tp->rcv_nxt;
- mb();
- tcp_set_state(sk, TCP_ESTABLISHED);
- sk->state_change(sk);
- /* Note, that this wakeup is only for marginal
- * crossed SYN case. Passively open sockets
- * are not waked up, because sk->sleep == NULL
- * and sk->socket == NULL.
- */
- if (sk->socket) {
- sk_wake_async(sk,0,POLL_OUT);
- }
- tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
- tp->snd_wnd = ntohs(th->window) << tp->snd_wscale;
- tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
- /* tcp_ack considers this ACK as duplicate
- * and does not calculate rtt.
- * Fix it at least with timestamps.
- */
- if (tp->saw_tstamp && tp->rcv_tsecr && !tp->srtt)
- tcp_ack_saw_tstamp(tp, 0);
- if (tp->tstamp_ok)
- tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
- tcp_init_metrics(sk);
- tcp_initialize_rcv_mss(sk);
- tcp_init_buffer_space(sk);
- tcp_fast_path_on(tp);
- } else {
- return 1;
- }
- break;
- case TCP_FIN_WAIT1:
- if (tp->snd_una == tp->write_seq) {
- tcp_set_state(sk, TCP_FIN_WAIT2);
- sk->shutdown |= SEND_SHUTDOWN;
- dst_confirm(sk->dst_cache);
- if (!sk->dead) {
- /* Wake up lingering close() */
- sk->state_change(sk);
- } else {
- int tmo;
- if (tp->linger2 < 0 ||
- (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
- after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
- tcp_done(sk);
- NET_INC_STATS_BH(TCPAbortOnData);
- return 1;
- }
- tmo = tcp_fin_time(tp);
- if (tmo > TCP_TIMEWAIT_LEN) {
- tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
- } else if (th->fin || sk->lock.users) {
- /* Bad case. We could lose such FIN otherwise.
- * It is not a big problem, but it looks confusing
- * and not so rare event. We still can lose it now,
- * if it spins in bh_lock_sock(), but it is really
- * marginal case.
- */
- tcp_reset_keepalive_timer(sk, tmo);
- } else {
- tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
- goto discard;
- }
- }
- }
- break;
- case TCP_CLOSING:
- if (tp->snd_una == tp->write_seq) {
- tcp_time_wait(sk, TCP_TIME_WAIT, 0);
- goto discard;
- }
- break;
- case TCP_LAST_ACK:
- if (tp->snd_una == tp->write_seq) {
- tcp_update_metrics(sk);
- tcp_done(sk);
- goto discard;
- }
- break;
- }
- } else
- goto discard;
- /* step 6: check the URG bit */
- tcp_urg(sk, skb, th);
- /* step 7: process the segment text */
- switch (sk->state) {
- case TCP_CLOSE_WAIT:
- case TCP_CLOSING:
- case TCP_LAST_ACK:
- if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
- break;
- case TCP_FIN_WAIT1:
- case TCP_FIN_WAIT2:
- /* RFC 793 says to queue data in these states,
- * RFC 1122 says we MUST send a reset.
- * BSD 4.4 also does reset.
- */
- if (sk->shutdown & RCV_SHUTDOWN) {
- if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
- after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
- NET_INC_STATS_BH(TCPAbortOnData);
- tcp_reset(sk);
- return 1;
- }
- }
- /* Fall through */
- case TCP_ESTABLISHED:
- tcp_data_queue(sk, skb);
- queued = 1;
- break;
- }
- /* tcp_data could move socket to TIME-WAIT */
- if (sk->state != TCP_CLOSE) {
- tcp_data_snd_check(sk);
- tcp_ack_snd_check(sk);
- }
- if (!queued) {
- discard:
- __kfree_skb(skb);
- }
- return 0;
- }