highmem.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:10k
- /*
- * High memory handling common code and variables.
- *
- * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
- * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
- *
- *
- * Redesigned the x86 32-bit VM architecture to deal with
- * 64-bit physical space. With current x86 CPUs this
- * means up to 64 Gigabytes physical RAM.
- *
- * Rewrote high memory support to move the page cache into
- * high memory. Implemented permanent (schedulable) kmaps
- * based on Linus' idea.
- *
- * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
- */
- #include <linux/mm.h>
- #include <linux/pagemap.h>
- #include <linux/highmem.h>
- #include <linux/swap.h>
- #include <linux/slab.h>
- /*
- * Virtual_count is not a pure "count".
- * 0 means that it is not mapped, and has not been mapped
- * since a TLB flush - it is usable.
- * 1 means that there are no users, but it has been mapped
- * since the last TLB flush - so we can't use it.
- * n means that there are (n-1) current users of it.
- */
- static int pkmap_count[LAST_PKMAP];
- static unsigned int last_pkmap_nr;
- static spinlock_cacheline_t kmap_lock_cacheline = {SPIN_LOCK_UNLOCKED};
- #define kmap_lock kmap_lock_cacheline.lock
- pte_t * pkmap_page_table;
- static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
- static void flush_all_zero_pkmaps(void)
- {
- int i;
- flush_cache_all();
- for (i = 0; i < LAST_PKMAP; i++) {
- struct page *page;
- /*
- * zero means we don't have anything to do,
- * >1 means that it is still in use. Only
- * a count of 1 means that it is free but
- * needs to be unmapped
- */
- if (pkmap_count[i] != 1)
- continue;
- pkmap_count[i] = 0;
- /* sanity check */
- if (pte_none(pkmap_page_table[i]))
- BUG();
- /*
- * Don't need an atomic fetch-and-clear op here;
- * no-one has the page mapped, and cannot get at
- * its virtual address (and hence PTE) without first
- * getting the kmap_lock (which is held here).
- * So no dangers, even with speculative execution.
- */
- page = pte_page(pkmap_page_table[i]);
- pte_clear(&pkmap_page_table[i]);
- page->virtual = NULL;
- }
- flush_tlb_all();
- }
- static inline unsigned long map_new_virtual(struct page *page)
- {
- unsigned long vaddr;
- int count;
- start:
- count = LAST_PKMAP;
- /* Find an empty entry */
- for (;;) {
- last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
- if (!last_pkmap_nr) {
- flush_all_zero_pkmaps();
- count = LAST_PKMAP;
- }
- if (!pkmap_count[last_pkmap_nr])
- break; /* Found a usable entry */
- if (--count)
- continue;
- /*
- * Sleep for somebody else to unmap their entries
- */
- {
- DECLARE_WAITQUEUE(wait, current);
- current->state = TASK_UNINTERRUPTIBLE;
- add_wait_queue(&pkmap_map_wait, &wait);
- spin_unlock(&kmap_lock);
- schedule();
- remove_wait_queue(&pkmap_map_wait, &wait);
- spin_lock(&kmap_lock);
- /* Somebody else might have mapped it while we slept */
- if (page->virtual)
- return (unsigned long) page->virtual;
- /* Re-start */
- goto start;
- }
- }
- vaddr = PKMAP_ADDR(last_pkmap_nr);
- set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
- pkmap_count[last_pkmap_nr] = 1;
- page->virtual = (void *) vaddr;
- return vaddr;
- }
- void *kmap_high(struct page *page)
- {
- unsigned long vaddr;
- /*
- * For highmem pages, we can't trust "virtual" until
- * after we have the lock.
- *
- * We cannot call this from interrupts, as it may block
- */
- spin_lock(&kmap_lock);
- vaddr = (unsigned long) page->virtual;
- if (!vaddr)
- vaddr = map_new_virtual(page);
- pkmap_count[PKMAP_NR(vaddr)]++;
- if (pkmap_count[PKMAP_NR(vaddr)] < 2)
- BUG();
- spin_unlock(&kmap_lock);
- return (void*) vaddr;
- }
- void kunmap_high(struct page *page)
- {
- unsigned long vaddr;
- unsigned long nr;
- int need_wakeup;
- spin_lock(&kmap_lock);
- vaddr = (unsigned long) page->virtual;
- if (!vaddr)
- BUG();
- nr = PKMAP_NR(vaddr);
- /*
- * A count must never go down to zero
- * without a TLB flush!
- */
- need_wakeup = 0;
- switch (--pkmap_count[nr]) {
- case 0:
- BUG();
- case 1:
- /*
- * Avoid an unnecessary wake_up() function call.
- * The common case is pkmap_count[] == 1, but
- * no waiters.
- * The tasks queued in the wait-queue are guarded
- * by both the lock in the wait-queue-head and by
- * the kmap_lock. As the kmap_lock is held here,
- * no need for the wait-queue-head's lock. Simply
- * test if the queue is empty.
- */
- need_wakeup = waitqueue_active(&pkmap_map_wait);
- }
- spin_unlock(&kmap_lock);
- /* do wake-up, if needed, race-free outside of the spin lock */
- if (need_wakeup)
- wake_up(&pkmap_map_wait);
- }
- #define POOL_SIZE 32
- /*
- * This lock gets no contention at all, normally.
- */
- static spinlock_t emergency_lock = SPIN_LOCK_UNLOCKED;
- int nr_emergency_pages;
- static LIST_HEAD(emergency_pages);
- int nr_emergency_bhs;
- static LIST_HEAD(emergency_bhs);
- /*
- * Simple bounce buffer support for highmem pages.
- * This will be moved to the block layer in 2.5.
- */
- static inline void copy_from_high_bh (struct buffer_head *to,
- struct buffer_head *from)
- {
- struct page *p_from;
- char *vfrom;
- p_from = from->b_page;
- vfrom = kmap_atomic(p_from, KM_USER0);
- memcpy(to->b_data, vfrom + bh_offset(from), to->b_size);
- kunmap_atomic(vfrom, KM_USER0);
- }
- static inline void copy_to_high_bh_irq (struct buffer_head *to,
- struct buffer_head *from)
- {
- struct page *p_to;
- char *vto;
- unsigned long flags;
- p_to = to->b_page;
- __save_flags(flags);
- __cli();
- vto = kmap_atomic(p_to, KM_BOUNCE_READ);
- memcpy(vto + bh_offset(to), from->b_data, to->b_size);
- kunmap_atomic(vto, KM_BOUNCE_READ);
- __restore_flags(flags);
- }
- static inline void bounce_end_io (struct buffer_head *bh, int uptodate)
- {
- struct page *page;
- struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private);
- unsigned long flags;
- bh_orig->b_end_io(bh_orig, uptodate);
- page = bh->b_page;
- spin_lock_irqsave(&emergency_lock, flags);
- if (nr_emergency_pages >= POOL_SIZE)
- __free_page(page);
- else {
- /*
- * We are abusing page->list to manage
- * the highmem emergency pool:
- */
- list_add(&page->list, &emergency_pages);
- nr_emergency_pages++;
- }
-
- if (nr_emergency_bhs >= POOL_SIZE) {
- #ifdef HIGHMEM_DEBUG
- /* Don't clobber the constructed slab cache */
- init_waitqueue_head(&bh->b_wait);
- #endif
- kmem_cache_free(bh_cachep, bh);
- } else {
- /*
- * Ditto in the bh case, here we abuse b_inode_buffers:
- */
- list_add(&bh->b_inode_buffers, &emergency_bhs);
- nr_emergency_bhs++;
- }
- spin_unlock_irqrestore(&emergency_lock, flags);
- }
- static __init int init_emergency_pool(void)
- {
- struct sysinfo i;
- si_meminfo(&i);
- si_swapinfo(&i);
-
- if (!i.totalhigh)
- return 0;
- spin_lock_irq(&emergency_lock);
- while (nr_emergency_pages < POOL_SIZE) {
- struct page * page = alloc_page(GFP_ATOMIC);
- if (!page) {
- printk("couldn't refill highmem emergency pages");
- break;
- }
- list_add(&page->list, &emergency_pages);
- nr_emergency_pages++;
- }
- while (nr_emergency_bhs < POOL_SIZE) {
- struct buffer_head * bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC);
- if (!bh) {
- printk("couldn't refill highmem emergency bhs");
- break;
- }
- list_add(&bh->b_inode_buffers, &emergency_bhs);
- nr_emergency_bhs++;
- }
- spin_unlock_irq(&emergency_lock);
- printk("allocated %d pages and %d bhs reserved for the highmem bouncesn",
- nr_emergency_pages, nr_emergency_bhs);
- return 0;
- }
- __initcall(init_emergency_pool);
- static void bounce_end_io_write (struct buffer_head *bh, int uptodate)
- {
- bounce_end_io(bh, uptodate);
- }
- static void bounce_end_io_read (struct buffer_head *bh, int uptodate)
- {
- struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private);
- if (uptodate)
- copy_to_high_bh_irq(bh_orig, bh);
- bounce_end_io(bh, uptodate);
- }
- struct page *alloc_bounce_page (void)
- {
- struct list_head *tmp;
- struct page *page;
- page = alloc_page(GFP_NOHIGHIO);
- if (page)
- return page;
- /*
- * No luck. First, kick the VM so it doesn't idle around while
- * we are using up our emergency rations.
- */
- wakeup_bdflush();
- repeat_alloc:
- /*
- * Try to allocate from the emergency pool.
- */
- tmp = &emergency_pages;
- spin_lock_irq(&emergency_lock);
- if (!list_empty(tmp)) {
- page = list_entry(tmp->next, struct page, list);
- list_del(tmp->next);
- nr_emergency_pages--;
- }
- spin_unlock_irq(&emergency_lock);
- if (page)
- return page;
- /* we need to wait I/O completion */
- run_task_queue(&tq_disk);
- yield();
- goto repeat_alloc;
- }
- struct buffer_head *alloc_bounce_bh (void)
- {
- struct list_head *tmp;
- struct buffer_head *bh;
- bh = kmem_cache_alloc(bh_cachep, SLAB_NOHIGHIO);
- if (bh)
- return bh;
- /*
- * No luck. First, kick the VM so it doesn't idle around while
- * we are using up our emergency rations.
- */
- wakeup_bdflush();
- repeat_alloc:
- /*
- * Try to allocate from the emergency pool.
- */
- tmp = &emergency_bhs;
- spin_lock_irq(&emergency_lock);
- if (!list_empty(tmp)) {
- bh = list_entry(tmp->next, struct buffer_head, b_inode_buffers);
- list_del(tmp->next);
- nr_emergency_bhs--;
- }
- spin_unlock_irq(&emergency_lock);
- if (bh)
- return bh;
- /* we need to wait I/O completion */
- run_task_queue(&tq_disk);
- yield();
- goto repeat_alloc;
- }
- struct buffer_head * create_bounce(int rw, struct buffer_head * bh_orig)
- {
- struct page *page;
- struct buffer_head *bh;
- if (!PageHighMem(bh_orig->b_page))
- return bh_orig;
- bh = alloc_bounce_bh();
- /*
- * This is wasteful for 1k buffers, but this is a stopgap measure
- * and we are being ineffective anyway. This approach simplifies
- * things immensly. On boxes with more than 4GB RAM this should
- * not be an issue anyway.
- */
- page = alloc_bounce_page();
- set_bh_page(bh, page, 0);
- bh->b_next = NULL;
- bh->b_blocknr = bh_orig->b_blocknr;
- bh->b_size = bh_orig->b_size;
- bh->b_list = -1;
- bh->b_dev = bh_orig->b_dev;
- bh->b_count = bh_orig->b_count;
- bh->b_rdev = bh_orig->b_rdev;
- bh->b_state = bh_orig->b_state;
- #ifdef HIGHMEM_DEBUG
- bh->b_flushtime = jiffies;
- bh->b_next_free = NULL;
- bh->b_prev_free = NULL;
- /* bh->b_this_page */
- bh->b_reqnext = NULL;
- bh->b_pprev = NULL;
- #endif
- /* bh->b_page */
- if (rw == WRITE) {
- bh->b_end_io = bounce_end_io_write;
- copy_from_high_bh(bh, bh_orig);
- } else
- bh->b_end_io = bounce_end_io_read;
- bh->b_private = (void *)bh_orig;
- bh->b_rsector = bh_orig->b_rsector;
- #ifdef HIGHMEM_DEBUG
- memset(&bh->b_wait, -1, sizeof(bh->b_wait));
- #endif
- return bh;
- }