cyberstorm.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:9k
- /* cyberstorm.c: Driver for CyberStorm SCSI Controller.
- *
- * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
- *
- * The CyberStorm SCSI driver is based on David S. Miller's ESP driver
- * for the Sparc computers.
- *
- * This work was made possible by Phase5 who willingly (and most generously)
- * supported me with hardware and all the information I needed.
- */
- /* TODO:
- *
- * 1) Figure out how to make a cleaner merge with the sparc driver with regard
- * to the caches and the Sparc MMU mapping.
- * 2) Make as few routines required outside the generic driver. A lot of the
- * routines in this file used to be inline!
- */
- #include <linux/module.h>
- #include <linux/init.h>
- #include <linux/kernel.h>
- #include <linux/delay.h>
- #include <linux/types.h>
- #include <linux/string.h>
- #include <linux/slab.h>
- #include <linux/blk.h>
- #include <linux/proc_fs.h>
- #include <linux/stat.h>
- #include "scsi.h"
- #include "hosts.h"
- #include "NCR53C9x.h"
- #include "cyberstorm.h"
- #include <linux/zorro.h>
- #include <asm/irq.h>
- #include <asm/amigaints.h>
- #include <asm/amigahw.h>
- #include <asm/pgtable.h>
- static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
- static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
- static void dma_dump_state(struct NCR_ESP *esp);
- static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
- static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
- static void dma_ints_off(struct NCR_ESP *esp);
- static void dma_ints_on(struct NCR_ESP *esp);
- static int dma_irq_p(struct NCR_ESP *esp);
- static void dma_led_off(struct NCR_ESP *esp);
- static void dma_led_on(struct NCR_ESP *esp);
- static int dma_ports_p(struct NCR_ESP *esp);
- static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
- static unsigned char ctrl_data = 0; /* Keep backup of the stuff written
- * to ctrl_reg. Always write a copy
- * to this register when writing to
- * the hardware register!
- */
- static volatile unsigned char cmd_buffer[16];
- /* This is where all commands are put
- * before they are transferred to the ESP chip
- * via PIO.
- */
- /***************************************************************** Detection */
- int __init cyber_esp_detect(Scsi_Host_Template *tpnt)
- {
- struct NCR_ESP *esp;
- struct zorro_dev *z = NULL;
- unsigned long address;
- while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
- unsigned long board = z->resource.start;
- if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ||
- z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) &&
- request_mem_region(board+CYBER_ESP_ADDR,
- sizeof(struct ESP_regs), "NCR53C9x")) {
- /* Figure out if this is a CyberStorm or really a
- * Fastlane/Blizzard Mk II by looking at the board size.
- * CyberStorm maps 64kB
- * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway)
- */
- if(z->resource.end-board != 0xffff) {
- release_mem_region(board+CYBER_ESP_ADDR,
- sizeof(struct ESP_regs));
- return 0;
- }
- esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR);
- /* Do command transfer with programmed I/O */
- esp->do_pio_cmds = 1;
- /* Required functions */
- esp->dma_bytes_sent = &dma_bytes_sent;
- esp->dma_can_transfer = &dma_can_transfer;
- esp->dma_dump_state = &dma_dump_state;
- esp->dma_init_read = &dma_init_read;
- esp->dma_init_write = &dma_init_write;
- esp->dma_ints_off = &dma_ints_off;
- esp->dma_ints_on = &dma_ints_on;
- esp->dma_irq_p = &dma_irq_p;
- esp->dma_ports_p = &dma_ports_p;
- esp->dma_setup = &dma_setup;
- /* Optional functions */
- esp->dma_barrier = 0;
- esp->dma_drain = 0;
- esp->dma_invalidate = 0;
- esp->dma_irq_entry = 0;
- esp->dma_irq_exit = 0;
- esp->dma_led_on = &dma_led_on;
- esp->dma_led_off = &dma_led_off;
- esp->dma_poll = 0;
- esp->dma_reset = 0;
- /* SCSI chip speed */
- esp->cfreq = 40000000;
- /* The DMA registers on the CyberStorm are mapped
- * relative to the device (i.e. in the same Zorro
- * I/O block).
- */
- address = (unsigned long)ZTWO_VADDR(board);
- esp->dregs = (void *)(address + CYBER_DMA_ADDR);
- /* ESP register base */
- esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR);
-
- /* Set the command buffer */
- esp->esp_command = (volatile unsigned char*) cmd_buffer;
- esp->esp_command_dvma = virt_to_bus(cmd_buffer);
- esp->irq = IRQ_AMIGA_PORTS;
- request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
- "CyberStorm SCSI", esp_intr);
- /* Figure out our scsi ID on the bus */
- /* The DMA cond flag contains a hardcoded jumper bit
- * which can be used to select host number 6 or 7.
- * However, even though it may change, we use a hardcoded
- * value of 7.
- */
- esp->scsi_id = 7;
-
- /* We don't have a differential SCSI-bus. */
- esp->diff = 0;
- esp_initialize(esp);
- printk("ESP: Total of %d ESP hosts found, %d actually in use.n", nesps, esps_in_use);
- esps_running = esps_in_use;
- return esps_in_use;
- }
- }
- return 0;
- }
- /************************************************************* DMA Functions */
- static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
- {
- /* Since the CyberStorm DMA is fully dedicated to the ESP chip,
- * the number of bytes sent (to the ESP chip) equals the number
- * of bytes in the FIFO - there is no buffering in the DMA controller.
- * XXXX Do I read this right? It is from host to ESP, right?
- */
- return fifo_count;
- }
- static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
- {
- /* I don't think there's any limit on the CyberDMA. So we use what
- * the ESP chip can handle (24 bit).
- */
- unsigned long sz = sp->SCp.this_residual;
- if(sz > 0x1000000)
- sz = 0x1000000;
- return sz;
- }
- static void dma_dump_state(struct NCR_ESP *esp)
- {
- ESPLOG(("esp%d: dma -- cond_reg<%02x>n",
- esp->esp_id, ((struct cyber_dma_registers *)
- (esp->dregs))->cond_reg));
- ESPLOG(("intreq:<%04x>, intena:<%04x>n",
- custom.intreqr, custom.intenar));
- }
- static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
- {
- struct cyber_dma_registers *dregs =
- (struct cyber_dma_registers *) esp->dregs;
- cache_clear(addr, length);
- addr &= ~(1);
- dregs->dma_addr0 = (addr >> 24) & 0xff;
- dregs->dma_addr1 = (addr >> 16) & 0xff;
- dregs->dma_addr2 = (addr >> 8) & 0xff;
- dregs->dma_addr3 = (addr ) & 0xff;
- ctrl_data &= ~(CYBER_DMA_WRITE);
- /* Check if physical address is outside Z2 space and of
- * block length/block aligned in memory. If this is the
- * case, enable 32 bit transfer. In all other cases, fall back
- * to 16 bit transfer.
- * Obviously 32 bit transfer should be enabled if the DMA address
- * and length are 32 bit aligned. However, this leads to some
- * strange behavior. Even 64 bit aligned addr/length fails.
- * Until I've found a reason for this, 32 bit transfer is only
- * used for full-block transfers (1kB).
- * -jskov
- */
- #if 0
- if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
- (addr < 0xff0000)))
- ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
- else
- ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
- #else
- ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
- #endif
- dregs->ctrl_reg = ctrl_data;
- }
- static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
- {
- struct cyber_dma_registers *dregs =
- (struct cyber_dma_registers *) esp->dregs;
- cache_push(addr, length);
- addr |= 1;
- dregs->dma_addr0 = (addr >> 24) & 0xff;
- dregs->dma_addr1 = (addr >> 16) & 0xff;
- dregs->dma_addr2 = (addr >> 8) & 0xff;
- dregs->dma_addr3 = (addr ) & 0xff;
- ctrl_data |= CYBER_DMA_WRITE;
- /* See comment above */
- #if 0
- if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
- (addr < 0xff0000)))
- ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
- else
- ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
- #else
- ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
- #endif
- dregs->ctrl_reg = ctrl_data;
- }
- static void dma_ints_off(struct NCR_ESP *esp)
- {
- disable_irq(esp->irq);
- }
- static void dma_ints_on(struct NCR_ESP *esp)
- {
- enable_irq(esp->irq);
- }
- static int dma_irq_p(struct NCR_ESP *esp)
- {
- /* It's important to check the DMA IRQ bit in the correct way! */
- return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) &&
- ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) &
- CYBER_DMA_HNDL_INTR));
- }
- static void dma_led_off(struct NCR_ESP *esp)
- {
- ctrl_data &= ~CYBER_DMA_LED;
- ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
- }
- static void dma_led_on(struct NCR_ESP *esp)
- {
- ctrl_data |= CYBER_DMA_LED;
- ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
- }
- static int dma_ports_p(struct NCR_ESP *esp)
- {
- return ((custom.intenar) & IF_PORTS);
- }
- static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
- {
- /* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
- * so when (write) is true, it actually means READ!
- */
- if(write){
- dma_init_read(esp, addr, count);
- } else {
- dma_init_write(esp, addr, count);
- }
- }
- #define HOSTS_C
- #include "cyberstorm.h"
- static Scsi_Host_Template driver_template = SCSI_CYBERSTORM;
- #include "scsi_module.c"
- int cyber_esp_release(struct Scsi_Host *instance)
- {
- #ifdef MODULE
- unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
- esp_deallocate((struct NCR_ESP *)instance->hostdata);
- esp_release();
- release_mem_region(address, sizeof(struct ESP_regs));
- free_irq(IRQ_AMIGA_PORTS, esp_intr);
- #endif
- return 1;
- }
- MODULE_LICENSE("GPL");