rtc.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:27k
- /*
- * Real Time Clock interface for Linux
- *
- * Copyright (C) 1996 Paul Gortmaker
- *
- * This driver allows use of the real time clock (built into
- * nearly all computers) from user space. It exports the /dev/rtc
- * interface supporting various ioctl() and also the
- * /proc/driver/rtc pseudo-file for status information.
- *
- * The ioctls can be used to set the interrupt behaviour and
- * generation rate from the RTC via IRQ 8. Then the /dev/rtc
- * interface can be used to make use of these timer interrupts,
- * be they interval or alarm based.
- *
- * The /dev/rtc interface will block on reads until an interrupt
- * has been received. If a RTC interrupt has already happened,
- * it will output an unsigned long and then block. The output value
- * contains the interrupt status in the low byte and the number of
- * interrupts since the last read in the remaining high bytes. The
- * /dev/rtc interface can also be used with the select(2) call.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- *
- * Based on other minimal char device drivers, like Alan's
- * watchdog, Ted's random, etc. etc.
- *
- * 1.07 Paul Gortmaker.
- * 1.08 Miquel van Smoorenburg: disallow certain things on the
- * DEC Alpha as the CMOS clock is also used for other things.
- * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
- * 1.09a Pete Zaitcev: Sun SPARC
- * 1.09b Jeff Garzik: Modularize, init cleanup
- * 1.09c Jeff Garzik: SMP cleanup
- * 1.10 Paul Barton-Davis: add support for async I/O
- * 1.10a Andrea Arcangeli: Alpha updates
- * 1.10b Andrew Morton: SMP lock fix
- * 1.10c Cesar Barros: SMP locking fixes and cleanup
- * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
- * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
- */
- #define RTC_VERSION "1.10e"
- #define RTC_IO_EXTENT 0x10 /* Only really two ports, but... */
- /*
- * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
- * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
- * design of the RTC, we don't want two different things trying to
- * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
- * this driver.)
- */
- #include <linux/config.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include <linux/miscdevice.h>
- #include <linux/ioport.h>
- #include <linux/fcntl.h>
- #include <linux/mc146818rtc.h>
- #include <linux/init.h>
- #include <linux/poll.h>
- #include <linux/proc_fs.h>
- #include <linux/spinlock.h>
- #include <linux/sysctl.h>
- #include <asm/io.h>
- #include <asm/uaccess.h>
- #include <asm/system.h>
- #ifdef __sparc__
- #include <asm/ebus.h>
- #ifdef __sparc_v9__
- #include <asm/isa.h>
- #endif
- static unsigned long rtc_port;
- static int rtc_irq = PCI_IRQ_NONE;
- #endif
- static int rtc_has_irq = 1;
- /*
- * We sponge a minor off of the misc major. No need slurping
- * up another valuable major dev number for this. If you add
- * an ioctl, make sure you don't conflict with SPARC's RTC
- * ioctls.
- */
- static struct fasync_struct *rtc_async_queue;
- static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
- static struct timer_list rtc_irq_timer;
- static ssize_t rtc_read(struct file *file, char *buf,
- size_t count, loff_t *ppos);
- static int rtc_ioctl(struct inode *inode, struct file *file,
- unsigned int cmd, unsigned long arg);
- #if RTC_IRQ
- static unsigned int rtc_poll(struct file *file, poll_table *wait);
- #endif
- static void get_rtc_time (struct rtc_time *rtc_tm);
- static void get_rtc_alm_time (struct rtc_time *alm_tm);
- #if RTC_IRQ
- static void rtc_dropped_irq(unsigned long data);
- static void set_rtc_irq_bit(unsigned char bit);
- static void mask_rtc_irq_bit(unsigned char bit);
- #endif
- static inline unsigned char rtc_is_updating(void);
- static int rtc_read_proc(char *page, char **start, off_t off,
- int count, int *eof, void *data);
- /*
- * Bits in rtc_status. (6 bits of room for future expansion)
- */
- #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
- #define RTC_TIMER_ON 0x02 /* missed irq timer active */
- /*
- * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
- * protected by the big kernel lock. However, ioctl can still disable the timer
- * in rtc_status and then with del_timer after the interrupt has read
- * rtc_status but before mod_timer is called, which would then reenable the
- * timer (but you would need to have an awful timing before you'd trip on it)
- */
- static unsigned long rtc_status = 0; /* bitmapped status byte. */
- static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
- static unsigned long rtc_irq_data = 0; /* our output to the world */
- static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
- /*
- * If this driver ever becomes modularised, it will be really nice
- * to make the epoch retain its value across module reload...
- */
- static unsigned long epoch = 1900; /* year corresponding to 0x00 */
- static const unsigned char days_in_mo[] =
- {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
- #if RTC_IRQ
- /*
- * A very tiny interrupt handler. It runs with SA_INTERRUPT set,
- * but there is possibility of conflicting with the set_rtc_mmss()
- * call (the rtc irq and the timer irq can easily run at the same
- * time in two different CPUs). So we need to serializes
- * accesses to the chip with the rtc_lock spinlock that each
- * architecture should implement in the timer code.
- * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
- */
- static void rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- /*
- * Can be an alarm interrupt, update complete interrupt,
- * or a periodic interrupt. We store the status in the
- * low byte and the number of interrupts received since
- * the last read in the remainder of rtc_irq_data.
- */
- spin_lock (&rtc_lock);
- rtc_irq_data += 0x100;
- rtc_irq_data &= ~0xff;
- rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
- if (rtc_status & RTC_TIMER_ON)
- mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
- spin_unlock (&rtc_lock);
- /* Now do the rest of the actions */
- wake_up_interruptible(&rtc_wait);
- kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
- }
- #endif
- /*
- * sysctl-tuning infrastructure.
- */
- static ctl_table rtc_table[] = {
- { 1, "max-user-freq", &rtc_max_user_freq, sizeof(int), 0644, NULL,
- &proc_dointvec, NULL, },
- { 0, }
- };
- static ctl_table rtc_root[] = {
- { 1, "rtc", NULL, 0, 0555, rtc_table, },
- { 0, }
- };
- static ctl_table dev_root[] = {
- { CTL_DEV, "dev", NULL, 0, 0555, rtc_root, },
- { 0, }
- };
- static struct ctl_table_header *sysctl_header;
- static int __init init_sysctl(void)
- {
- sysctl_header = register_sysctl_table(dev_root, 0);
- return 0;
- }
- static void __exit cleanup_sysctl(void)
- {
- unregister_sysctl_table(sysctl_header);
- }
- /*
- * Now all the various file operations that we export.
- */
- static ssize_t rtc_read(struct file *file, char *buf,
- size_t count, loff_t *ppos)
- {
- #if !RTC_IRQ
- return -EIO;
- #else
- DECLARE_WAITQUEUE(wait, current);
- unsigned long data;
- ssize_t retval;
-
- if (rtc_has_irq == 0)
- return -EIO;
- if (count < sizeof(unsigned long))
- return -EINVAL;
- add_wait_queue(&rtc_wait, &wait);
- current->state = TASK_INTERRUPTIBLE;
-
- do {
- /* First make it right. Then make it fast. Putting this whole
- * block within the parentheses of a while would be too
- * confusing. And no, xchg() is not the answer. */
- spin_lock_irq (&rtc_lock);
- data = rtc_irq_data;
- rtc_irq_data = 0;
- spin_unlock_irq (&rtc_lock);
- if (data != 0)
- break;
- if (file->f_flags & O_NONBLOCK) {
- retval = -EAGAIN;
- goto out;
- }
- if (signal_pending(current)) {
- retval = -ERESTARTSYS;
- goto out;
- }
- schedule();
- } while (1);
- retval = put_user(data, (unsigned long *)buf);
- if (!retval)
- retval = sizeof(unsigned long);
- out:
- current->state = TASK_RUNNING;
- remove_wait_queue(&rtc_wait, &wait);
- return retval;
- #endif
- }
- static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
- unsigned long arg)
- {
- struct rtc_time wtime;
- #if RTC_IRQ
- if (rtc_has_irq == 0) {
- switch (cmd) {
- case RTC_AIE_OFF:
- case RTC_AIE_ON:
- case RTC_PIE_OFF:
- case RTC_PIE_ON:
- case RTC_UIE_OFF:
- case RTC_UIE_ON:
- case RTC_IRQP_READ:
- case RTC_IRQP_SET:
- return -EINVAL;
- };
- }
- #endif
- switch (cmd) {
- #if RTC_IRQ
- case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
- {
- mask_rtc_irq_bit(RTC_AIE);
- return 0;
- }
- case RTC_AIE_ON: /* Allow alarm interrupts. */
- {
- set_rtc_irq_bit(RTC_AIE);
- return 0;
- }
- case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
- {
- mask_rtc_irq_bit(RTC_PIE);
- if (rtc_status & RTC_TIMER_ON) {
- spin_lock_irq (&rtc_lock);
- rtc_status &= ~RTC_TIMER_ON;
- del_timer(&rtc_irq_timer);
- spin_unlock_irq (&rtc_lock);
- }
- return 0;
- }
- case RTC_PIE_ON: /* Allow periodic ints */
- {
- /*
- * We don't really want Joe User enabling more
- * than 64Hz of interrupts on a multi-user machine.
- */
- if ((rtc_freq > rtc_max_user_freq) &&
- (!capable(CAP_SYS_RESOURCE)))
- return -EACCES;
- if (!(rtc_status & RTC_TIMER_ON)) {
- spin_lock_irq (&rtc_lock);
- rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
- add_timer(&rtc_irq_timer);
- rtc_status |= RTC_TIMER_ON;
- spin_unlock_irq (&rtc_lock);
- }
- set_rtc_irq_bit(RTC_PIE);
- return 0;
- }
- case RTC_UIE_OFF: /* Mask ints from RTC updates. */
- {
- mask_rtc_irq_bit(RTC_UIE);
- return 0;
- }
- case RTC_UIE_ON: /* Allow ints for RTC updates. */
- {
- set_rtc_irq_bit(RTC_UIE);
- return 0;
- }
- #endif
- case RTC_ALM_READ: /* Read the present alarm time */
- {
- /*
- * This returns a struct rtc_time. Reading >= 0xc0
- * means "don't care" or "match all". Only the tm_hour,
- * tm_min, and tm_sec values are filled in.
- */
- get_rtc_alm_time(&wtime);
- break;
- }
- case RTC_ALM_SET: /* Store a time into the alarm */
- {
- /*
- * This expects a struct rtc_time. Writing 0xff means
- * "don't care" or "match all". Only the tm_hour,
- * tm_min and tm_sec are used.
- */
- unsigned char hrs, min, sec;
- struct rtc_time alm_tm;
- if (copy_from_user(&alm_tm, (struct rtc_time*)arg,
- sizeof(struct rtc_time)))
- return -EFAULT;
- hrs = alm_tm.tm_hour;
- min = alm_tm.tm_min;
- sec = alm_tm.tm_sec;
- if (hrs >= 24)
- hrs = 0xff;
- if (min >= 60)
- min = 0xff;
- if (sec >= 60)
- sec = 0xff;
- spin_lock_irq(&rtc_lock);
- if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
- RTC_ALWAYS_BCD)
- {
- BIN_TO_BCD(sec);
- BIN_TO_BCD(min);
- BIN_TO_BCD(hrs);
- }
- CMOS_WRITE(hrs, RTC_HOURS_ALARM);
- CMOS_WRITE(min, RTC_MINUTES_ALARM);
- CMOS_WRITE(sec, RTC_SECONDS_ALARM);
- spin_unlock_irq(&rtc_lock);
- return 0;
- }
- case RTC_RD_TIME: /* Read the time/date from RTC */
- {
- get_rtc_time(&wtime);
- break;
- }
- case RTC_SET_TIME: /* Set the RTC */
- {
- struct rtc_time rtc_tm;
- unsigned char mon, day, hrs, min, sec, leap_yr;
- unsigned char save_control, save_freq_select;
- unsigned int yrs;
- #ifdef CONFIG_DECSTATION
- unsigned int real_yrs;
- #endif
- if (!capable(CAP_SYS_TIME))
- return -EACCES;
- if (copy_from_user(&rtc_tm, (struct rtc_time*)arg,
- sizeof(struct rtc_time)))
- return -EFAULT;
- yrs = rtc_tm.tm_year + 1900;
- mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
- day = rtc_tm.tm_mday;
- hrs = rtc_tm.tm_hour;
- min = rtc_tm.tm_min;
- sec = rtc_tm.tm_sec;
- if (yrs < 1970)
- return -EINVAL;
- leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
- if ((mon > 12) || (day == 0))
- return -EINVAL;
- if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
- return -EINVAL;
-
- if ((hrs >= 24) || (min >= 60) || (sec >= 60))
- return -EINVAL;
- if ((yrs -= epoch) > 255) /* They are unsigned */
- return -EINVAL;
- spin_lock_irq(&rtc_lock);
- #ifdef CONFIG_DECSTATION
- real_yrs = yrs;
- yrs = 72;
- /*
- * We want to keep the year set to 73 until March
- * for non-leap years, so that Feb, 29th is handled
- * correctly.
- */
- if (!leap_yr && mon < 3) {
- real_yrs--;
- yrs = 73;
- }
- #endif
- /* These limits and adjustments are independant of
- * whether the chip is in binary mode or not.
- */
- if (yrs > 169) {
- spin_unlock_irq(&rtc_lock);
- return -EINVAL;
- }
- if (yrs >= 100)
- yrs -= 100;
- if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
- || RTC_ALWAYS_BCD) {
- BIN_TO_BCD(sec);
- BIN_TO_BCD(min);
- BIN_TO_BCD(hrs);
- BIN_TO_BCD(day);
- BIN_TO_BCD(mon);
- BIN_TO_BCD(yrs);
- }
- save_control = CMOS_READ(RTC_CONTROL);
- CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
- save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
- CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
- #ifdef CONFIG_DECSTATION
- CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
- #endif
- CMOS_WRITE(yrs, RTC_YEAR);
- CMOS_WRITE(mon, RTC_MONTH);
- CMOS_WRITE(day, RTC_DAY_OF_MONTH);
- CMOS_WRITE(hrs, RTC_HOURS);
- CMOS_WRITE(min, RTC_MINUTES);
- CMOS_WRITE(sec, RTC_SECONDS);
- CMOS_WRITE(save_control, RTC_CONTROL);
- CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
- spin_unlock_irq(&rtc_lock);
- return 0;
- }
- #if RTC_IRQ
- case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
- {
- return put_user(rtc_freq, (unsigned long *)arg);
- }
- case RTC_IRQP_SET: /* Set periodic IRQ rate. */
- {
- int tmp = 0;
- unsigned char val;
- /*
- * The max we can do is 8192Hz.
- */
- if ((arg < 2) || (arg > 8192))
- return -EINVAL;
- /*
- * We don't really want Joe User generating more
- * than 64Hz of interrupts on a multi-user machine.
- */
- if ((arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
- return -EACCES;
- while (arg > (1<<tmp))
- tmp++;
- /*
- * Check that the input was really a power of 2.
- */
- if (arg != (1<<tmp))
- return -EINVAL;
- spin_lock_irq(&rtc_lock);
- rtc_freq = arg;
- val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
- val |= (16 - tmp);
- CMOS_WRITE(val, RTC_FREQ_SELECT);
- spin_unlock_irq(&rtc_lock);
- return 0;
- }
- #endif
- case RTC_EPOCH_READ: /* Read the epoch. */
- {
- return put_user (epoch, (unsigned long *)arg);
- }
- case RTC_EPOCH_SET: /* Set the epoch. */
- {
- /*
- * There were no RTC clocks before 1900.
- */
- if (arg < 1900)
- return -EINVAL;
- if (!capable(CAP_SYS_TIME))
- return -EACCES;
- epoch = arg;
- return 0;
- }
- default:
- return -ENOTTY;
- }
- return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
- }
- /*
- * We enforce only one user at a time here with the open/close.
- * Also clear the previous interrupt data on an open, and clean
- * up things on a close.
- */
- /* We use rtc_lock to protect against concurrent opens. So the BKL is not
- * needed here. Or anywhere else in this driver. */
- static int rtc_open(struct inode *inode, struct file *file)
- {
- spin_lock_irq (&rtc_lock);
- if(rtc_status & RTC_IS_OPEN)
- goto out_busy;
- rtc_status |= RTC_IS_OPEN;
- rtc_irq_data = 0;
- spin_unlock_irq (&rtc_lock);
- return 0;
- out_busy:
- spin_unlock_irq (&rtc_lock);
- return -EBUSY;
- }
- static int rtc_fasync (int fd, struct file *filp, int on)
- {
- return fasync_helper (fd, filp, on, &rtc_async_queue);
- }
- static int rtc_release(struct inode *inode, struct file *file)
- {
- #if RTC_IRQ
- unsigned char tmp;
- if (rtc_has_irq == 0)
- goto no_irq;
- /*
- * Turn off all interrupts once the device is no longer
- * in use, and clear the data.
- */
- spin_lock_irq(&rtc_lock);
- tmp = CMOS_READ(RTC_CONTROL);
- tmp &= ~RTC_PIE;
- tmp &= ~RTC_AIE;
- tmp &= ~RTC_UIE;
- CMOS_WRITE(tmp, RTC_CONTROL);
- CMOS_READ(RTC_INTR_FLAGS);
- if (rtc_status & RTC_TIMER_ON) {
- rtc_status &= ~RTC_TIMER_ON;
- del_timer(&rtc_irq_timer);
- }
- spin_unlock_irq(&rtc_lock);
- if (file->f_flags & FASYNC) {
- rtc_fasync (-1, file, 0);
- }
- no_irq:
- #endif
- spin_lock_irq (&rtc_lock);
- rtc_irq_data = 0;
- spin_unlock_irq (&rtc_lock);
- /* No need for locking -- nobody else can do anything until this rmw is
- * committed, and no timer is running. */
- rtc_status &= ~RTC_IS_OPEN;
- return 0;
- }
- #if RTC_IRQ
- /* Called without the kernel lock - fine */
- static unsigned int rtc_poll(struct file *file, poll_table *wait)
- {
- unsigned long l;
- if (rtc_has_irq == 0)
- return 0;
- poll_wait(file, &rtc_wait, wait);
- spin_lock_irq (&rtc_lock);
- l = rtc_irq_data;
- spin_unlock_irq (&rtc_lock);
- if (l != 0)
- return POLLIN | POLLRDNORM;
- return 0;
- }
- #endif
- /*
- * The various file operations we support.
- */
- static struct file_operations rtc_fops = {
- owner: THIS_MODULE,
- llseek: no_llseek,
- read: rtc_read,
- #if RTC_IRQ
- poll: rtc_poll,
- #endif
- ioctl: rtc_ioctl,
- open: rtc_open,
- release: rtc_release,
- fasync: rtc_fasync,
- };
- static struct miscdevice rtc_dev=
- {
- RTC_MINOR,
- "rtc",
- &rtc_fops
- };
- static int __init rtc_init(void)
- {
- #if defined(__alpha__) || defined(__mips__)
- unsigned int year, ctrl;
- unsigned long uip_watchdog;
- char *guess = NULL;
- #endif
- #ifdef __sparc__
- struct linux_ebus *ebus;
- struct linux_ebus_device *edev;
- #ifdef __sparc_v9__
- struct isa_bridge *isa_br;
- struct isa_device *isa_dev;
- #endif
- #endif
- #ifdef __sparc__
- for_each_ebus(ebus) {
- for_each_ebusdev(edev, ebus) {
- if(strcmp(edev->prom_name, "rtc") == 0) {
- rtc_port = edev->resource[0].start;
- rtc_irq = edev->irqs[0];
- goto found;
- }
- }
- }
- #ifdef __sparc_v9__
- for_each_isa(isa_br) {
- for_each_isadev(isa_dev, isa_br) {
- if (strcmp(isa_dev->prom_name, "rtc") == 0) {
- rtc_port = isa_dev->resource.start;
- rtc_irq = isa_dev->irq;
- goto found;
- }
- }
- }
- #endif
- printk(KERN_ERR "rtc_init: no PC rtc foundn");
- return -EIO;
- found:
- if (rtc_irq == PCI_IRQ_NONE) {
- rtc_has_irq = 0;
- goto no_irq;
- }
- /*
- * XXX Interrupt pin #7 in Espresso is shared between RTC and
- * PCI Slot 2 INTA# (and some INTx# in Slot 1). SA_INTERRUPT here
- * is asking for trouble with add-on boards. Change to SA_SHIRQ.
- */
- if (request_irq(rtc_irq, rtc_interrupt, SA_INTERRUPT, "rtc", (void *)&rtc_port)) {
- /*
- * Standard way for sparc to print irq's is to use
- * __irq_itoa(). I think for EBus it's ok to use %d.
- */
- printk(KERN_ERR "rtc: cannot register IRQ %dn", rtc_irq);
- return -EIO;
- }
- no_irq:
- #else
- if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc"))
- {
- printk(KERN_ERR "rtc: I/O port %d is not free.n", RTC_PORT (0));
- return -EIO;
- }
- #if RTC_IRQ
- if(request_irq(RTC_IRQ, rtc_interrupt, SA_INTERRUPT, "rtc", NULL))
- {
- /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
- printk(KERN_ERR "rtc: IRQ %d is not free.n", RTC_IRQ);
- release_region(RTC_PORT(0), RTC_IO_EXTENT);
- return -EIO;
- }
- #endif
- #endif /* __sparc__ vs. others */
- misc_register(&rtc_dev);
- create_proc_read_entry ("driver/rtc", 0, 0, rtc_read_proc, NULL);
- #if defined(__alpha__) || defined(__mips__)
- rtc_freq = HZ;
-
- /* Each operating system on an Alpha uses its own epoch.
- Let's try to guess which one we are using now. */
-
- uip_watchdog = jiffies;
- if (rtc_is_updating() != 0)
- while (jiffies - uip_watchdog < 2*HZ/100) {
- barrier();
- cpu_relax();
- }
-
- spin_lock_irq(&rtc_lock);
- year = CMOS_READ(RTC_YEAR);
- ctrl = CMOS_READ(RTC_CONTROL);
- spin_unlock_irq(&rtc_lock);
-
- if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- BCD_TO_BIN(year); /* This should never happen... */
-
- if (year < 20) {
- epoch = 2000;
- guess = "SRM (post-2000)";
- } else if (year >= 20 && year < 48) {
- epoch = 1980;
- guess = "ARC console";
- } else if (year >= 48 && year < 72) {
- epoch = 1952;
- guess = "Digital UNIX";
- #if defined(__mips__)
- } else if (year >= 72 && year < 74) {
- epoch = 2000;
- guess = "Digital DECstation";
- #else
- } else if (year >= 70) {
- epoch = 1900;
- guess = "Standard PC (1900)";
- #endif
- }
- if (guess)
- printk(KERN_INFO "rtc: %s epoch (%lu) detectedn", guess, epoch);
- #endif
- #if RTC_IRQ
- if (rtc_has_irq == 0)
- goto no_irq2;
- init_timer(&rtc_irq_timer);
- rtc_irq_timer.function = rtc_dropped_irq;
- spin_lock_irq(&rtc_lock);
- /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
- CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
- spin_unlock_irq(&rtc_lock);
- rtc_freq = 1024;
- no_irq2:
- #endif
- (void) init_sysctl();
- printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "n");
- return 0;
- }
- static void __exit rtc_exit (void)
- {
- cleanup_sysctl();
- remove_proc_entry ("driver/rtc", NULL);
- misc_deregister(&rtc_dev);
- #ifdef __sparc__
- if (rtc_has_irq)
- free_irq (rtc_irq, &rtc_port);
- #else
- release_region (RTC_PORT (0), RTC_IO_EXTENT);
- #if RTC_IRQ
- if (rtc_has_irq)
- free_irq (RTC_IRQ, NULL);
- #endif
- #endif /* __sparc__ */
- }
- module_init(rtc_init);
- module_exit(rtc_exit);
- EXPORT_NO_SYMBOLS;
- #if RTC_IRQ
- /*
- * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
- * (usually during an IDE disk interrupt, with IRQ unmasking off)
- * Since the interrupt handler doesn't get called, the IRQ status
- * byte doesn't get read, and the RTC stops generating interrupts.
- * A timer is set, and will call this function if/when that happens.
- * To get it out of this stalled state, we just read the status.
- * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
- * (You *really* shouldn't be trying to use a non-realtime system
- * for something that requires a steady > 1KHz signal anyways.)
- */
- static void rtc_dropped_irq(unsigned long data)
- {
- unsigned long freq;
- spin_lock_irq (&rtc_lock);
- /* Just in case someone disabled the timer from behind our back... */
- if (rtc_status & RTC_TIMER_ON)
- mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
- rtc_irq_data += ((rtc_freq/HZ)<<8);
- rtc_irq_data &= ~0xff;
- rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
- freq = rtc_freq;
- spin_unlock_irq(&rtc_lock);
- printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.n", freq);
- /* Now we have new data */
- wake_up_interruptible(&rtc_wait);
- kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
- }
- #endif
- /*
- * Info exported via "/proc/driver/rtc".
- */
- static int rtc_proc_output (char *buf)
- {
- #define YN(bit) ((ctrl & bit) ? "yes" : "no")
- #define NY(bit) ((ctrl & bit) ? "no" : "yes")
- char *p;
- struct rtc_time tm;
- unsigned char batt, ctrl;
- unsigned long freq;
- spin_lock_irq(&rtc_lock);
- batt = CMOS_READ(RTC_VALID) & RTC_VRT;
- ctrl = CMOS_READ(RTC_CONTROL);
- freq = rtc_freq;
- spin_unlock_irq(&rtc_lock);
- p = buf;
- get_rtc_time(&tm);
- /*
- * There is no way to tell if the luser has the RTC set for local
- * time or for Universal Standard Time (GMT). Probably local though.
- */
- p += sprintf(p,
- "rtc_timet: %02d:%02d:%02dn"
- "rtc_datet: %04d-%02d-%02dn"
- "rtc_epocht: %04lun",
- tm.tm_hour, tm.tm_min, tm.tm_sec,
- tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
- get_rtc_alm_time(&tm);
- /*
- * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
- * match any value for that particular field. Values that are
- * greater than a valid time, but less than 0xc0 shouldn't appear.
- */
- p += sprintf(p, "alarmtt: ");
- if (tm.tm_hour <= 24)
- p += sprintf(p, "%02d:", tm.tm_hour);
- else
- p += sprintf(p, "**:");
- if (tm.tm_min <= 59)
- p += sprintf(p, "%02d:", tm.tm_min);
- else
- p += sprintf(p, "**:");
- if (tm.tm_sec <= 59)
- p += sprintf(p, "%02dn", tm.tm_sec);
- else
- p += sprintf(p, "**n");
- p += sprintf(p,
- "DST_enablet: %sn"
- "BCDtt: %sn"
- "24hrtt: %sn"
- "square_wavet: %sn"
- "alarm_IRQt: %sn"
- "update_IRQt: %sn"
- "periodic_IRQt: %sn"
- "periodic_freqt: %ldn"
- "batt_statust: %sn",
- YN(RTC_DST_EN),
- NY(RTC_DM_BINARY),
- YN(RTC_24H),
- YN(RTC_SQWE),
- YN(RTC_AIE),
- YN(RTC_UIE),
- YN(RTC_PIE),
- freq,
- batt ? "okay" : "dead");
- return p - buf;
- #undef YN
- #undef NY
- }
- static int rtc_read_proc(char *page, char **start, off_t off,
- int count, int *eof, void *data)
- {
- int len = rtc_proc_output (page);
- if (len <= off+count) *eof = 1;
- *start = page + off;
- len -= off;
- if (len>count) len = count;
- if (len<0) len = 0;
- return len;
- }
- /*
- * Returns true if a clock update is in progress
- */
- /* FIXME shouldn't this be above rtc_init to make it fully inlined? */
- static inline unsigned char rtc_is_updating(void)
- {
- unsigned char uip;
- spin_lock_irq(&rtc_lock);
- uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
- spin_unlock_irq(&rtc_lock);
- return uip;
- }
- static void get_rtc_time(struct rtc_time *rtc_tm)
- {
- unsigned long uip_watchdog = jiffies;
- unsigned char ctrl;
- #ifdef CONFIG_DECSTATION
- unsigned int real_year;
- #endif
- /*
- * read RTC once any update in progress is done. The update
- * can take just over 2ms. We wait 10 to 20ms. There is no need to
- * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
- * If you need to know *exactly* when a second has started, enable
- * periodic update complete interrupts, (via ioctl) and then
- * immediately read /dev/rtc which will block until you get the IRQ.
- * Once the read clears, read the RTC time (again via ioctl). Easy.
- */
- if (rtc_is_updating() != 0)
- while (jiffies - uip_watchdog < 2*HZ/100) {
- barrier();
- cpu_relax();
- }
- /*
- * Only the values that we read from the RTC are set. We leave
- * tm_wday, tm_yday and tm_isdst untouched. Even though the
- * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
- * by the RTC when initially set to a non-zero value.
- */
- spin_lock_irq(&rtc_lock);
- rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
- rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
- rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
- rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
- rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
- rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
- #ifdef CONFIG_DECSTATION
- real_year = CMOS_READ(RTC_DEC_YEAR);
- #endif
- ctrl = CMOS_READ(RTC_CONTROL);
- spin_unlock_irq(&rtc_lock);
- if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- {
- BCD_TO_BIN(rtc_tm->tm_sec);
- BCD_TO_BIN(rtc_tm->tm_min);
- BCD_TO_BIN(rtc_tm->tm_hour);
- BCD_TO_BIN(rtc_tm->tm_mday);
- BCD_TO_BIN(rtc_tm->tm_mon);
- BCD_TO_BIN(rtc_tm->tm_year);
- }
- #ifdef CONFIG_DECSTATION
- rtc_tm->tm_year += real_year - 72;
- #endif
- /*
- * Account for differences between how the RTC uses the values
- * and how they are defined in a struct rtc_time;
- */
- if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
- rtc_tm->tm_year += 100;
- rtc_tm->tm_mon--;
- }
- static void get_rtc_alm_time(struct rtc_time *alm_tm)
- {
- unsigned char ctrl;
- /*
- * Only the values that we read from the RTC are set. That
- * means only tm_hour, tm_min, and tm_sec.
- */
- spin_lock_irq(&rtc_lock);
- alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
- alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
- alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
- ctrl = CMOS_READ(RTC_CONTROL);
- spin_unlock_irq(&rtc_lock);
- if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- {
- BCD_TO_BIN(alm_tm->tm_sec);
- BCD_TO_BIN(alm_tm->tm_min);
- BCD_TO_BIN(alm_tm->tm_hour);
- }
- }
- #if RTC_IRQ
- /*
- * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
- * Rumour has it that if you frob the interrupt enable/disable
- * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
- * ensure you actually start getting interrupts. Probably for
- * compatibility with older/broken chipset RTC implementations.
- * We also clear out any old irq data after an ioctl() that
- * meddles with the interrupt enable/disable bits.
- */
- static void mask_rtc_irq_bit(unsigned char bit)
- {
- unsigned char val;
- spin_lock_irq(&rtc_lock);
- val = CMOS_READ(RTC_CONTROL);
- val &= ~bit;
- CMOS_WRITE(val, RTC_CONTROL);
- CMOS_READ(RTC_INTR_FLAGS);
- rtc_irq_data = 0;
- spin_unlock_irq(&rtc_lock);
- }
- static void set_rtc_irq_bit(unsigned char bit)
- {
- unsigned char val;
- spin_lock_irq(&rtc_lock);
- val = CMOS_READ(RTC_CONTROL);
- val |= bit;
- CMOS_WRITE(val, RTC_CONTROL);
- CMOS_READ(RTC_INTR_FLAGS);
- rtc_irq_data = 0;
- spin_unlock_irq(&rtc_lock);
- }
- #endif
- MODULE_AUTHOR("Paul Gortmaker");
- MODULE_LICENSE("GPL");