hil_mlc.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:25k
源码类别:

Linux/Unix编程

开发平台:

Unix_Linux

  1. /*
  2.  * HIL MLC state machine and serio interface driver
  3.  *
  4.  * Copyright (c) 2001 Brian S. Julin
  5.  * All rights reserved.
  6.  *
  7.  * Redistribution and use in source and binary forms, with or without
  8.  * modification, are permitted provided that the following conditions
  9.  * are met:
  10.  * 1. Redistributions of source code must retain the above copyright
  11.  *    notice, this list of conditions, and the following disclaimer,
  12.  *    without modification.
  13.  * 2. The name of the author may not be used to endorse or promote products
  14.  *    derived from this software without specific prior written permission.
  15.  *
  16.  * Alternatively, this software may be distributed under the terms of the
  17.  * GNU General Public License ("GPL").
  18.  *
  19.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  20.  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21.  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22.  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
  23.  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24.  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25.  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26.  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27.  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28.  *
  29.  * References:
  30.  * HP-HIL Technical Reference Manual.  Hewlett Packard Product No. 45918A
  31.  *
  32.  *
  33.  * Driver theory of operation:
  34.  *
  35.  * Some access methods and an ISR is defined by the sub-driver 
  36.  * (e.g. hp_sdc_mlc.c).  These methods are expected to provide a 
  37.  * few bits of logic in addition to raw access to the HIL MLC, 
  38.  * specifically, the ISR, which is entirely registered by the 
  39.  * sub-driver and invoked directly, must check for record 
  40.  * termination or packet match, at which point a semaphore must
  41.  * be cleared and then the hil_mlcs_tasklet must be scheduled.
  42.  *
  43.  * The hil_mlcs_tasklet processes the state machine for all MLCs
  44.  * each time it runs, checking each MLC's progress at the current
  45.  * node in the state machine, and moving the MLC to subsequent nodes
  46.  * in the state machine when appropriate.  It will reschedule
  47.  * itself if output is pending.  (This rescheduling should be replaced
  48.  * at some point with a sub-driver-specific mechanism.)
  49.  *
  50.  * A timer task prods the tasket once per second to prevent 
  51.  * hangups when attached devices do not return expected data
  52.  * and to initiate probes of the loop for new devices.
  53.  */
  54. #include <linux/hil_mlc.h>
  55. #include <linux/errno.h>
  56. #include <linux/kernel.h>
  57. #include <linux/module.h>
  58. #include <linux/init.h>
  59. #include <linux/interrupt.h>
  60. #include <linux/timer.h>
  61. #include <linux/sched.h>
  62. #include <linux/list.h>
  63. MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
  64. MODULE_DESCRIPTION("HIL MLC serio");
  65. MODULE_LICENSE("Dual BSD/GPL");
  66. EXPORT_SYMBOL(hil_mlc_register);
  67. EXPORT_SYMBOL(hil_mlc_unregister);
  68. #define PREFIX "HIL MLC: "
  69. static LIST_HEAD(hil_mlcs);
  70. static rwlock_t hil_mlcs_lock = RW_LOCK_UNLOCKED;
  71. static struct timer_list hil_mlcs_kicker;
  72. static int hil_mlcs_probe;
  73. static void hil_mlcs_process(unsigned long unused);
  74. DECLARE_TASKLET_DISABLED(hil_mlcs_tasklet, hil_mlcs_process, 0);
  75. /* #define HIL_MLC_DEBUG */
  76. /********************** Device info/instance management **********************/
  77. static void hil_mlc_clear_di_map (hil_mlc *mlc, int val) {
  78. int j;
  79. for (j = val; j < 7 ; j++) {
  80. mlc->di_map[j] = -1;
  81. }
  82. }
  83. static void hil_mlc_clear_di_scratch (hil_mlc *mlc) {
  84. memset(&(mlc->di_scratch), 0, sizeof(mlc->di_scratch));
  85. }
  86. static void hil_mlc_copy_di_scratch (hil_mlc *mlc, int idx) {
  87. memcpy(&(mlc->di[idx]), &(mlc->di_scratch), sizeof(mlc->di_scratch));
  88. }
  89. static int hil_mlc_match_di_scratch (hil_mlc *mlc) {
  90. int idx;
  91. for (idx = 0; idx < HIL_MLC_DEVMEM; idx++) {
  92. int j, found;
  93. /* In-use slots are not eligible. */
  94. found = 0;
  95. for (j = 0; j < 7 ; j++) {
  96. if (mlc->di_map[j] == idx) found++;
  97. }
  98. if (found) continue;
  99. if (!memcmp(mlc->di + idx, 
  100.     &(mlc->di_scratch), 
  101.     sizeof(mlc->di_scratch))) break;
  102. }
  103. return((idx >= HIL_MLC_DEVMEM) ? -1 : idx);
  104. }
  105. static int hil_mlc_find_free_di(hil_mlc *mlc) {
  106. int idx;
  107. /* TODO: Pick all-zero slots first, failing that, 
  108.  * randomize the slot picked among those eligible. 
  109.  */
  110. for (idx = 0; idx < HIL_MLC_DEVMEM; idx++) {
  111. int j, found;
  112. found = 0;
  113. for (j = 0; j < 7 ; j++) {
  114. if (mlc->di_map[j] == idx) found++;
  115. }
  116. if (!found) break;
  117. }
  118. return(idx); /* Note: It is guaranteed at least one above will match */
  119. }
  120. static inline void hil_mlc_clean_serio_map(hil_mlc *mlc) {
  121. int idx;
  122. for (idx = 0; idx < HIL_MLC_DEVMEM; idx++) {
  123. int j, found;
  124. found = 0;
  125. for (j = 0; j < 7 ; j++) {
  126. if (mlc->di_map[j] == idx) found++;
  127. }
  128. if (!found) mlc->serio_map[idx].di_revmap = -1;
  129. }
  130. }
  131. static void hil_mlc_send_polls(hil_mlc *mlc) {
  132. int did, i, cnt;
  133. struct serio *serio;
  134. struct serio_dev *dev;
  135. i = cnt = 0;
  136. did = (mlc->ipacket[0] & HIL_PKT_ADDR_MASK) >> 8;
  137. serio = did ? &(mlc->serio[mlc->di_map[did - 1]]) : NULL;
  138. dev = (serio != NULL) ? serio->dev : NULL;
  139. while (mlc->icount < 15 - i) {
  140. hil_packet p;
  141. p = mlc->ipacket[i];
  142. if (did != (p & HIL_PKT_ADDR_MASK) >> 8) {
  143. if (dev == NULL || dev->interrupt == NULL) goto skip;
  144. dev->interrupt(serio, 0, 0);
  145. dev->interrupt(serio, HIL_ERR_INT >> 16, 0);
  146. dev->interrupt(serio, HIL_PKT_CMD >> 8, 0);
  147. dev->interrupt(serio, HIL_CMD_POL + cnt, 0);
  148. skip:
  149. did = (p & HIL_PKT_ADDR_MASK) >> 8;
  150. serio = did ? &(mlc->serio[mlc->di_map[did-1]]) : NULL;
  151. dev = (serio != NULL) ? serio->dev : NULL;
  152. cnt = 0;
  153. }
  154. cnt++; i++;
  155. if (dev == NULL || dev->interrupt == NULL) continue;
  156. dev->interrupt(serio, (p >> 24), 0);
  157. dev->interrupt(serio, (p >> 16) & 0xff, 0);
  158. dev->interrupt(serio, (p >> 8) & ~HIL_PKT_ADDR_MASK, 0);
  159. dev->interrupt(serio, p & 0xff, 0);
  160. }
  161. }
  162. /*************************** State engine *********************************/
  163. #define HILSEN_SCHED 0x000100 /* Schedule the tasklet */
  164. #define HILSEN_BREAK 0x000200 /* Wait until next pass */
  165. #define HILSEN_UP 0x000400 /* relative node#, decrement */
  166. #define HILSEN_DOWN 0x000800 /* relative node#, increment */
  167. #define HILSEN_FOLLOW 0x001000 /* use retval as next node# */
  168. #define HILSEN_MASK 0x0000ff
  169. #define HILSEN_START 0
  170. #define HILSEN_RESTART 1
  171. #define HILSEN_DHR 9
  172. #define HILSEN_DHR2 10
  173. #define HILSEN_IFC 14
  174. #define HILSEN_HEAL0 16
  175. #define HILSEN_HEAL 18
  176. #define HILSEN_ACF      21
  177. #define HILSEN_ACF2 22
  178. #define HILSEN_DISC0 25
  179. #define HILSEN_DISC 27
  180. #define HILSEN_MATCH 40
  181. #define HILSEN_OPERATE 41
  182. #define HILSEN_PROBE 44
  183. #define HILSEN_DSR 52
  184. #define HILSEN_REPOLL 55
  185. #define HILSEN_IFCACF 58
  186. #define HILSEN_END 60
  187. #define HILSEN_NEXT (HILSEN_DOWN | 1)
  188. #define HILSEN_SAME (HILSEN_DOWN | 0)
  189. #define HILSEN_LAST (HILSEN_UP | 1)
  190. #define HILSEN_DOZE (HILSEN_SAME | HILSEN_SCHED | HILSEN_BREAK)
  191. #define HILSEN_SLEEP (HILSEN_SAME | HILSEN_BREAK)
  192. static int hilse_match(hil_mlc *mlc, int unused) {
  193. int rc;
  194. rc = hil_mlc_match_di_scratch(mlc);
  195. if (rc == -1) {
  196. rc = hil_mlc_find_free_di(mlc);
  197. if (rc == -1) goto err;
  198. #ifdef HIL_MLC_DEBUG
  199. printk(KERN_DEBUG PREFIX "new in slot %in", rc);
  200. #endif
  201. hil_mlc_copy_di_scratch(mlc, rc);
  202. mlc->di_map[mlc->ddi] = rc;
  203. mlc->serio_map[rc].di_revmap = mlc->ddi;
  204. hil_mlc_clean_serio_map(mlc);
  205. serio_rescan(mlc->serio + rc);
  206. return -1;
  207. }
  208. mlc->di_map[mlc->ddi] = rc;
  209. #ifdef HIL_MLC_DEBUG
  210. printk(KERN_DEBUG PREFIX "same in slot %in", rc);
  211. #endif
  212. mlc->serio_map[rc].di_revmap = mlc->ddi;
  213. hil_mlc_clean_serio_map(mlc);
  214. return 0;
  215.  err:
  216. printk(KERN_ERR PREFIX "Residual device slots exhausted, close some serios!n");
  217. return 1;
  218. }
  219. /* An LCV used to prevent runaway loops, forces 5 second sleep when reset. */
  220. static int hilse_init_lcv(hil_mlc *mlc, int unused) {
  221. struct timeval tv;
  222. do_gettimeofday(&tv);
  223. if(mlc->lcv == 0) goto restart;  /* First init, no need to dally */
  224. if(tv.tv_sec - mlc->lcv_tv.tv_sec < 5) return -1;
  225.  restart:
  226. mlc->lcv_tv = tv;
  227. mlc->lcv = 0;
  228. return 0;
  229. }
  230. static int hilse_inc_lcv(hil_mlc *mlc, int lim) {
  231. if (mlc->lcv++ >= lim) return -1;
  232. return 0;
  233. }
  234. #if 0
  235. static int hilse_set_lcv(hil_mlc *mlc, int val) {
  236. mlc->lcv = val;
  237. return 0;
  238. }
  239. #endif
  240. /* Management of the discovered device index (zero based, -1 means no devs) */
  241. static int hilse_set_ddi(hil_mlc *mlc, int val) {
  242. mlc->ddi = val;
  243. hil_mlc_clear_di_map(mlc, val + 1);
  244. return 0;
  245. }
  246. static int hilse_dec_ddi(hil_mlc *mlc, int unused) {
  247. mlc->ddi--;
  248. if (mlc->ddi <= -1) { 
  249. mlc->ddi = -1;
  250. hil_mlc_clear_di_map(mlc, 0);
  251. return -1;
  252. }
  253. hil_mlc_clear_di_map(mlc, mlc->ddi + 1);
  254. return 0;
  255. }
  256. static int hilse_inc_ddi(hil_mlc *mlc, int unused) {
  257. if (mlc->ddi >= 6) {
  258. BUG();
  259. return -1;
  260. }
  261. mlc->ddi++;
  262. return 0;
  263. }
  264. static int hilse_take_idd(hil_mlc *mlc, int unused) {
  265. int i;
  266. /* Help the state engine: 
  267.  * Is this a real IDD response or just an echo? 
  268.  *
  269.  * Real IDD response does not start with a command. 
  270.  */
  271. if (mlc->ipacket[0] & HIL_PKT_CMD) goto bail;
  272. /* Should have the command echoed further down. */
  273. for (i = 1; i < 16; i++) {
  274. if (((mlc->ipacket[i] & HIL_PKT_ADDR_MASK) == 
  275.      (mlc->ipacket[0] & HIL_PKT_ADDR_MASK)) &&
  276.     (mlc->ipacket[i] & HIL_PKT_CMD) && 
  277.     ((mlc->ipacket[i] & HIL_PKT_DATA_MASK) == HIL_CMD_IDD))
  278. break;
  279. }
  280. if (i > 15) goto bail;
  281. /* And the rest of the packets should still be clear. */
  282. while (++i < 16) {
  283. if (mlc->ipacket[i]) break;
  284. }
  285. if (i < 16) goto bail;
  286. for (i = 0; i < 16; i++) {
  287. mlc->di_scratch.idd[i] = 
  288. mlc->ipacket[i] & HIL_PKT_DATA_MASK;
  289. }
  290. /* Next step is to see if RSC supported */
  291. if (mlc->di_scratch.idd[1] & HIL_IDD_HEADER_RSC) 
  292. return HILSEN_NEXT;
  293. if (mlc->di_scratch.idd[1] & HIL_IDD_HEADER_EXD) 
  294. return HILSEN_DOWN | 4;
  295. return 0;
  296.  bail:
  297. mlc->ddi--;
  298. return -1; /* This should send us off to ACF */
  299. }
  300. static int hilse_take_rsc(hil_mlc *mlc, int unused) {
  301. int i;
  302. for (i = 0; i < 16; i++) {
  303. mlc->di_scratch.rsc[i] = 
  304. mlc->ipacket[i] & HIL_PKT_DATA_MASK;
  305. }
  306. /* Next step is to see if EXD supported (IDD has already been read) */
  307. if (mlc->di_scratch.idd[1] & HIL_IDD_HEADER_EXD) 
  308. return HILSEN_NEXT;
  309. return 0;
  310. }
  311. static int hilse_take_exd(hil_mlc *mlc, int unused) {
  312. int i;
  313. for (i = 0; i < 16; i++) {
  314. mlc->di_scratch.exd[i] = 
  315. mlc->ipacket[i] & HIL_PKT_DATA_MASK;
  316. }
  317. /* Next step is to see if RNM supported. */
  318. if (mlc->di_scratch.exd[0] & HIL_EXD_HEADER_RNM) 
  319. return HILSEN_NEXT;
  320. return 0;
  321. }
  322. static int hilse_take_rnm(hil_mlc *mlc, int unused) {
  323. int i;
  324. for (i = 0; i < 16; i++) {
  325. mlc->di_scratch.rnm[i] = 
  326. mlc->ipacket[i] & HIL_PKT_DATA_MASK;
  327. }
  328. do {
  329.   char nam[17];
  330.   snprintf(nam, 16, "%s", mlc->di_scratch.rnm);
  331.   nam[16] = '';
  332.   printk(KERN_INFO PREFIX "Device name gotten: %sn", nam);
  333. } while (0);
  334. return 0;
  335. }
  336. static int hilse_operate(hil_mlc *mlc, int repoll) { 
  337. if (mlc->opercnt == 0) hil_mlcs_probe = 0;
  338. mlc->opercnt = 1;
  339. hil_mlc_send_polls(mlc);
  340. if (!hil_mlcs_probe) return 0;
  341. hil_mlcs_probe = 0;
  342. mlc->opercnt = 0;
  343. return 1;
  344. }
  345. #define FUNC(funct, funct_arg, zero_rc, neg_rc, pos_rc) 
  346. { HILSE_FUNC, { func: &funct }, funct_arg, zero_rc, neg_rc, pos_rc },
  347. #define OUT(pack) 
  348. { HILSE_OUT, { packet: pack }, 0, HILSEN_NEXT, HILSEN_DOZE, 0 },
  349. #define CTS 
  350. { HILSE_CTS, { packet: 0    }, 0, HILSEN_NEXT | HILSEN_SCHED | HILSEN_BREAK, HILSEN_DOZE, 0 },
  351. #define EXPECT(comp, to, got, got_wrong, timed_out) 
  352. { HILSE_EXPECT, { packet: comp }, to, got, got_wrong, timed_out },
  353. #define EXPECT_LAST(comp, to, got, got_wrong, timed_out) 
  354. { HILSE_EXPECT_LAST, { packet: comp }, to, got, got_wrong, timed_out },
  355. #define EXPECT_DISC(comp, to, got, got_wrong, timed_out) 
  356. { HILSE_EXPECT_DISC, { packet: comp }, to, got, got_wrong, timed_out },
  357. #define IN(to, got, got_error, timed_out) 
  358. { HILSE_IN, { packet: 0    }, to, got, got_error, timed_out },
  359. #define OUT_DISC(pack) 
  360. { HILSE_OUT_DISC, { packet: pack }, 0, 0, 0, 0 },
  361. #define OUT_LAST(pack) 
  362. { HILSE_OUT_LAST, { packet: pack }, 0, 0, 0, 0 },
  363. struct hilse_node hil_mlc_se[HILSEN_END] = {
  364. /* 0  HILSEN_START */
  365. FUNC(hilse_init_lcv, 0, HILSEN_NEXT, HILSEN_SLEEP, 0)
  366. /* 1  HILSEN_RESTART */
  367. FUNC(hilse_inc_lcv, 10, HILSEN_NEXT, HILSEN_START,  0)
  368. OUT(HIL_CTRL_ONLY) /* Disable APE */
  369. CTS
  370. #define TEST_PACKET(x) 
  371. (HIL_PKT_CMD | (x << HIL_PKT_ADDR_SHIFT) | x << 4 | x)
  372. OUT(HIL_DO_ALTER_CTRL | HIL_CTRL_TEST | TEST_PACKET(0x5))
  373. EXPECT(HIL_ERR_INT | TEST_PACKET(0x5),
  374.        2000, HILSEN_NEXT, HILSEN_RESTART, HILSEN_RESTART)
  375. OUT(HIL_DO_ALTER_CTRL | HIL_CTRL_TEST | TEST_PACKET(0xa))
  376. EXPECT(HIL_ERR_INT | TEST_PACKET(0xa),
  377.        2000, HILSEN_NEXT, HILSEN_RESTART, HILSEN_RESTART)
  378. OUT(HIL_CTRL_ONLY | 0) /* Disable test mode */
  379. /* 9  HILSEN_DHR */
  380. FUNC(hilse_init_lcv, 0, HILSEN_NEXT, HILSEN_SLEEP, 0)
  381. /* 10 HILSEN_DHR2 */
  382. FUNC(hilse_inc_lcv, 10, HILSEN_NEXT, HILSEN_START, 0)
  383. FUNC(hilse_set_ddi, -1, HILSEN_NEXT, 0, 0)
  384. OUT(HIL_PKT_CMD | HIL_CMD_DHR)
  385. IN(300000, HILSEN_DHR2, HILSEN_DHR2, HILSEN_NEXT)
  386. /* 14 HILSEN_IFC */
  387.    OUT(HIL_PKT_CMD | HIL_CMD_IFC)
  388. EXPECT(HIL_PKT_CMD | HIL_CMD_IFC | HIL_ERR_INT,
  389.        20000, HILSEN_DISC, HILSEN_DHR2, HILSEN_NEXT )
  390. /* If devices are there, they weren't in PUP or other loopback mode.
  391.  * We're more concerned at this point with restoring operation
  392.  * to devices than discovering new ones, so we try to salvage
  393.  * the loop configuration by closing off the loop.
  394.  */
  395. /* 16 HILSEN_HEAL0 */
  396. FUNC(hilse_dec_ddi, 0, HILSEN_NEXT, HILSEN_ACF, 0)
  397. FUNC(hilse_inc_ddi, 0, HILSEN_NEXT, 0, 0)
  398. /* 18 HILSEN_HEAL */
  399. OUT_LAST(HIL_CMD_ELB)
  400. EXPECT_LAST(HIL_CMD_ELB | HIL_ERR_INT, 
  401.     20000, HILSEN_REPOLL, HILSEN_DSR, HILSEN_NEXT)
  402. FUNC(hilse_dec_ddi, 0, HILSEN_HEAL, HILSEN_NEXT, 0)
  403. /* 21 HILSEN_ACF */
  404. FUNC(hilse_init_lcv, 0, HILSEN_NEXT, HILSEN_DOZE, 0)
  405. /* 22 HILSEN_ACF2 */
  406. FUNC(hilse_inc_lcv, 10, HILSEN_NEXT, HILSEN_START, 0)
  407. OUT(HIL_PKT_CMD | HIL_CMD_ACF | 1)
  408. IN(20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_NEXT)
  409. /* 25 HILSEN_DISC0 */
  410. OUT_DISC(HIL_PKT_CMD | HIL_CMD_ELB)
  411. EXPECT_DISC(HIL_PKT_CMD | HIL_CMD_ELB | HIL_ERR_INT,
  412.        20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
  413. /* Only enter here if response just received */
  414. /* 27 HILSEN_DISC */
  415. OUT_DISC(HIL_PKT_CMD | HIL_CMD_IDD)
  416. EXPECT_DISC(HIL_PKT_CMD | HIL_CMD_IDD | HIL_ERR_INT,
  417.        20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_START)
  418. FUNC(hilse_inc_ddi,  0, HILSEN_NEXT, HILSEN_START, 0)
  419. FUNC(hilse_take_idd, 0, HILSEN_MATCH, HILSEN_IFCACF, HILSEN_FOLLOW)
  420. OUT_LAST(HIL_PKT_CMD | HIL_CMD_RSC)
  421. EXPECT_LAST(HIL_PKT_CMD | HIL_CMD_RSC | HIL_ERR_INT,
  422.        30000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
  423. FUNC(hilse_take_rsc, 0, HILSEN_MATCH, 0, HILSEN_FOLLOW)
  424. OUT_LAST(HIL_PKT_CMD | HIL_CMD_EXD)
  425. EXPECT_LAST(HIL_PKT_CMD | HIL_CMD_EXD | HIL_ERR_INT,
  426.        30000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
  427. FUNC(hilse_take_exd, 0, HILSEN_MATCH, 0, HILSEN_FOLLOW)
  428. OUT_LAST(HIL_PKT_CMD | HIL_CMD_RNM)
  429. EXPECT_LAST(HIL_PKT_CMD | HIL_CMD_RNM | HIL_ERR_INT,
  430.        30000, HILSEN_NEXT, HILSEN_DSR, HILSEN_DSR)
  431. FUNC(hilse_take_rnm, 0, HILSEN_MATCH, 0, 0)
  432. /* 40 HILSEN_MATCH */
  433. FUNC(hilse_match, 0, HILSEN_NEXT, HILSEN_NEXT, /* TODO */ 0)
  434. /* 41 HILSEN_OPERATE */
  435. OUT(HIL_PKT_CMD | HIL_CMD_POL)
  436. EXPECT(HIL_PKT_CMD | HIL_CMD_POL | HIL_ERR_INT,
  437.        20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_NEXT)
  438. FUNC(hilse_operate, 0, HILSEN_OPERATE, HILSEN_IFC, HILSEN_NEXT)
  439. /* 44 HILSEN_PROBE */
  440. OUT_LAST(HIL_PKT_CMD | HIL_CMD_EPT)
  441. IN(10000,  HILSEN_DISC, HILSEN_DSR, HILSEN_NEXT)
  442. OUT_DISC(HIL_PKT_CMD | HIL_CMD_ELB)
  443. IN(10000, HILSEN_DISC, HILSEN_DSR, HILSEN_NEXT)
  444. OUT(HIL_PKT_CMD | HIL_CMD_ACF | 1)
  445. IN(10000, HILSEN_DISC0, HILSEN_DSR, HILSEN_NEXT)
  446. OUT_LAST(HIL_PKT_CMD | HIL_CMD_ELB)
  447. IN(10000, HILSEN_OPERATE, HILSEN_DSR, HILSEN_DSR)
  448. /* 52 HILSEN_DSR */
  449. FUNC(hilse_set_ddi, -1, HILSEN_NEXT, 0, 0)
  450. OUT(HIL_PKT_CMD | HIL_CMD_DSR)
  451. IN(20000,  HILSEN_DHR, HILSEN_DHR, HILSEN_IFC)
  452. /* 55 HILSEN_REPOLL */
  453. OUT(HIL_PKT_CMD | HIL_CMD_RPL)
  454. EXPECT(HIL_PKT_CMD | HIL_CMD_RPL | HIL_ERR_INT,
  455.        20000, HILSEN_NEXT, HILSEN_DSR, HILSEN_NEXT)
  456. FUNC(hilse_operate, 1, HILSEN_OPERATE, HILSEN_IFC, HILSEN_PROBE)
  457. /* 58 HILSEN_IFCACF */
  458.    OUT(HIL_PKT_CMD | HIL_CMD_IFC)
  459. EXPECT(HIL_PKT_CMD | HIL_CMD_IFC | HIL_ERR_INT,
  460.        20000, HILSEN_ACF2, HILSEN_DHR2, HILSEN_HEAL)
  461. /* 60 HILSEN_END */
  462. };
  463. static inline void hilse_setup_input(hil_mlc *mlc, struct hilse_node *node) {
  464. switch (node->act) {
  465. case HILSE_EXPECT_DISC:
  466. mlc->imatch = node->object.packet;
  467. mlc->imatch |= ((mlc->ddi + 2) << HIL_PKT_ADDR_SHIFT);
  468. break;
  469. case HILSE_EXPECT_LAST:
  470. mlc->imatch = node->object.packet;
  471. mlc->imatch |= ((mlc->ddi + 1) << HIL_PKT_ADDR_SHIFT);
  472. break;
  473. case HILSE_EXPECT:
  474. mlc->imatch = node->object.packet;
  475. break;
  476. case HILSE_IN:
  477. mlc->imatch = 0;
  478. break;
  479. default:
  480. BUG();
  481. }
  482. mlc->istarted = 1;
  483. mlc->intimeout = node->arg;
  484. do_gettimeofday(&(mlc->instart));
  485. mlc->icount = 15;
  486. memset(mlc->ipacket, 0, 16 * sizeof(hil_packet));
  487. if (down_trylock(&(mlc->isem))) BUG();
  488. return;
  489. }
  490. #ifdef HIL_MLC_DEBUG
  491. static int doze = 0;
  492. static int seidx; /* For debug */
  493. static int kick = 1;
  494. #endif
  495. static int hilse_donode (hil_mlc *mlc) {
  496. struct hilse_node *node;
  497. int nextidx = 0;
  498. int sched_long = 0;
  499. unsigned long flags;
  500. #ifdef HIL_MLC_DEBUG
  501. if (mlc->seidx && (mlc->seidx != seidx)  && mlc->seidx != 41 && mlc->seidx != 42 && mlc->seidx != 43) {
  502.   printk(KERN_DEBUG PREFIX "z%i n%s {%i}", doze, kick ? "K" : "", mlc->seidx);
  503. doze = 0;
  504. }
  505. kick = 0;
  506. seidx = mlc->seidx;
  507. #endif
  508. node = hil_mlc_se + mlc->seidx;
  509. switch (node->act) {
  510. int rc;
  511. hil_packet pack;
  512. case HILSE_FUNC:
  513. if (node->object.func == NULL) break;
  514. rc = node->object.func(mlc, node->arg);
  515. nextidx = (rc > 0) ? node->ugly : 
  516. ((rc < 0) ? node->bad : node->good);
  517. if (nextidx == HILSEN_FOLLOW) nextidx = rc;
  518. break;
  519. case HILSE_EXPECT_LAST:
  520. case HILSE_EXPECT_DISC:
  521. case HILSE_EXPECT:
  522. case HILSE_IN:
  523. /* Already set up from previous HILSE_OUT_* */
  524. write_lock_irqsave(&(mlc->lock), flags);
  525. rc = mlc->in(mlc, node->arg);
  526. if (rc == 2)  {
  527. nextidx = HILSEN_DOZE;
  528. sched_long = 1;
  529. write_unlock_irqrestore(&(mlc->lock), flags);
  530. break;
  531. }
  532. if (rc == 1) nextidx = node->ugly;
  533. else if (rc == 0) nextidx = node->good;
  534. else nextidx = node->bad;
  535. mlc->istarted = 0;
  536. write_unlock_irqrestore(&(mlc->lock), flags);
  537. break;
  538. case HILSE_OUT_LAST:
  539. write_lock_irqsave(&(mlc->lock), flags);
  540. pack = node->object.packet;
  541. pack |= ((mlc->ddi + 1) << HIL_PKT_ADDR_SHIFT);
  542. goto out;
  543. case HILSE_OUT_DISC:
  544. write_lock_irqsave(&(mlc->lock), flags);
  545. pack = node->object.packet;
  546. pack |= ((mlc->ddi + 2) << HIL_PKT_ADDR_SHIFT);
  547. goto out;
  548. case HILSE_OUT:
  549. write_lock_irqsave(&(mlc->lock), flags);
  550. pack = node->object.packet;
  551. out:
  552. if (mlc->istarted) goto out2;
  553. /* Prepare to receive input */
  554. if ((node + 1)->act & HILSE_IN)
  555. hilse_setup_input(mlc, node + 1);
  556. out2:
  557. write_unlock_irqrestore(&(mlc->lock), flags);
  558. if (down_trylock(&mlc->osem)) {
  559. nextidx = HILSEN_DOZE;
  560. break;
  561. }
  562. up(&mlc->osem);
  563. write_lock_irqsave(&(mlc->lock), flags);
  564. if (!(mlc->ostarted)) {
  565. mlc->ostarted = 1;
  566. mlc->opacket = pack;
  567. mlc->out(mlc);
  568. nextidx = HILSEN_DOZE;
  569. write_unlock_irqrestore(&(mlc->lock), flags);
  570. break;
  571. }
  572. mlc->ostarted = 0;
  573. do_gettimeofday(&(mlc->instart));
  574. write_unlock_irqrestore(&(mlc->lock), flags);
  575. nextidx = HILSEN_NEXT;
  576. break;
  577. case HILSE_CTS:
  578. nextidx = mlc->cts(mlc) ? node->bad : node->good;
  579. break;
  580. default:
  581. BUG();
  582. nextidx = 0;
  583. break;
  584. }
  585. #ifdef HIL_MLC_DEBUG
  586. if (nextidx == HILSEN_DOZE) doze++;
  587. #endif
  588. while (nextidx & HILSEN_SCHED) {
  589. struct timeval tv;
  590. if (!sched_long) goto sched;
  591. do_gettimeofday(&tv);
  592. tv.tv_usec += 1000000 * (tv.tv_sec - mlc->instart.tv_sec);
  593. tv.tv_usec -= mlc->instart.tv_usec;
  594. if (tv.tv_usec >= mlc->intimeout) goto sched;
  595. tv.tv_usec = (mlc->intimeout - tv.tv_usec) * HZ / 1000000;
  596. if (!tv.tv_usec) goto sched;
  597. mod_timer(&hil_mlcs_kicker, jiffies + tv.tv_usec);
  598. break;
  599. sched:
  600. tasklet_schedule(&hil_mlcs_tasklet);
  601. break;
  602. if (nextidx & HILSEN_DOWN) mlc->seidx += nextidx & HILSEN_MASK;
  603. else if (nextidx & HILSEN_UP) mlc->seidx -= nextidx & HILSEN_MASK;
  604. else mlc->seidx = nextidx & HILSEN_MASK;
  605. if (nextidx & HILSEN_BREAK) return 1;
  606. return 0;
  607. }
  608. /******************** tasklet context functions **************************/
  609. static void hil_mlcs_process(unsigned long unused) {
  610. struct list_head *tmp;
  611. read_lock(&hil_mlcs_lock);
  612. list_for_each(tmp, &hil_mlcs) {
  613. struct hil_mlc *mlc = list_entry(tmp, hil_mlc, list);
  614. while (hilse_donode(mlc) == 0) {
  615. #ifdef HIL_MLC_DEBUG
  616.   if (mlc->seidx != 41 && 
  617.       mlc->seidx != 42 && 
  618.       mlc->seidx != 43) 
  619.     printk(KERN_DEBUG PREFIX " + ");
  620. #endif
  621. };
  622. }
  623. read_unlock(&hil_mlcs_lock);
  624. }
  625. /************************* Keepalive timer task *********************/
  626. void hil_mlcs_timer (unsigned long data) {
  627. hil_mlcs_probe = 1;
  628. tasklet_schedule(&hil_mlcs_tasklet);
  629. /* Re-insert the periodic task. */
  630. if (!timer_pending(&hil_mlcs_kicker))
  631. mod_timer(&hil_mlcs_kicker, jiffies + HZ);
  632. }
  633. /******************** user/kernel context functions **********************/
  634. static int hil_mlc_serio_write(struct serio *serio, unsigned char c) {
  635. struct hil_mlc_serio_map *map;
  636. struct hil_mlc *mlc;
  637. struct serio_dev *dev;
  638. uint8_t *idx, *last;
  639. map = serio->driver;
  640. if (map == NULL) {
  641. BUG();
  642. return -EIO;
  643. }
  644. mlc = map->mlc;
  645. if (mlc == NULL) {
  646. BUG();
  647. return -EIO;
  648. }
  649. mlc->serio_opacket[map->didx] |= 
  650. ((hil_packet)c) << (8 * (3 - mlc->serio_oidx[map->didx]));
  651. if (mlc->serio_oidx[map->didx] >= 3) {
  652. /* for now only commands */
  653. if (!(mlc->serio_opacket[map->didx] & HIL_PKT_CMD)) 
  654. return -EIO;
  655. switch (mlc->serio_opacket[map->didx] & HIL_PKT_DATA_MASK) {
  656. case HIL_CMD_IDD:
  657. idx = mlc->di[map->didx].idd;
  658. goto emu;
  659. case HIL_CMD_RSC:
  660. idx = mlc->di[map->didx].rsc;
  661. goto emu;
  662. case HIL_CMD_EXD:
  663. idx = mlc->di[map->didx].exd;
  664. goto emu;
  665. case HIL_CMD_RNM:
  666. idx = mlc->di[map->didx].rnm;
  667. goto emu;
  668. default:
  669. break;
  670. }
  671. mlc->serio_oidx[map->didx] = 0;
  672. mlc->serio_opacket[map->didx] = 0;
  673. }
  674. mlc->serio_oidx[map->didx]++;
  675. return -EIO;
  676.  emu:
  677. dev = serio->dev;
  678. if (dev == NULL) {
  679. BUG();
  680. return -EIO;
  681. }
  682. last = idx + 15;
  683. while ((last != idx) && (*last == 0)) last--;
  684. while (idx != last) {
  685. dev->interrupt(serio, 0, 0);
  686. dev->interrupt(serio, HIL_ERR_INT >> 16, 0);
  687. dev->interrupt(serio, 0, 0);
  688. dev->interrupt(serio, *idx, 0);
  689. idx++;
  690. }
  691. dev->interrupt(serio, 0, 0);
  692. dev->interrupt(serio, HIL_ERR_INT >> 16, 0);
  693. dev->interrupt(serio, HIL_PKT_CMD >> 8, 0);
  694. dev->interrupt(serio, *idx, 0);
  695. mlc->serio_oidx[map->didx] = 0;
  696. mlc->serio_opacket[map->didx] = 0;
  697. return 0;
  698. }
  699. static int hil_mlc_serio_open(struct serio *serio) {
  700. struct hil_mlc_serio_map *map;
  701. struct hil_mlc *mlc;
  702. if (serio->private != NULL) return -EBUSY;
  703. map = serio->driver;
  704. if (map == NULL) {
  705. BUG();
  706. return -ENODEV;
  707. }
  708. mlc = map->mlc;
  709. if (mlc == NULL) {
  710. BUG();
  711. return -ENODEV;
  712. }
  713. mlc->inc_use_count();
  714. return 0;
  715. }
  716. static void hil_mlc_serio_close(struct serio *serio) {
  717. struct hil_mlc_serio_map *map;
  718. struct hil_mlc *mlc;
  719. map = serio->driver;
  720. if (map == NULL) {
  721. BUG();
  722. return;
  723. }
  724. mlc = map->mlc;
  725. if (mlc == NULL) {
  726. BUG();
  727. return;
  728. }
  729. mlc->dec_use_count();
  730. serio->private = NULL;
  731. serio->dev = NULL;
  732. /* TODO wake up interruptable */
  733. }
  734. int hil_mlc_register(hil_mlc *mlc) {
  735. int i;
  736.         unsigned long flags;
  737. MOD_INC_USE_COUNT;
  738. if (mlc == NULL) {
  739. MOD_DEC_USE_COUNT;
  740. return -EINVAL;
  741. }
  742. mlc->istarted = 0;
  743.         mlc->ostarted = 0;
  744.         mlc->lock = RW_LOCK_UNLOCKED;
  745.         init_MUTEX(&(mlc->osem));
  746.         init_MUTEX(&(mlc->isem));
  747.         mlc->icount = -1;
  748.         mlc->imatch = 0;
  749. mlc->opercnt = 0;
  750.         init_MUTEX_LOCKED(&(mlc->csem));
  751. hil_mlc_clear_di_scratch(mlc);
  752. hil_mlc_clear_di_map(mlc, 0);
  753. for (i = 0; i < HIL_MLC_DEVMEM; i++) {
  754. hil_mlc_copy_di_scratch(mlc, i);
  755. memset(&(mlc->serio[i]), 0, sizeof(mlc->serio[0]));
  756. mlc->serio[i].type = SERIO_HIL | SERIO_HIL_MLC;
  757. mlc->serio[i].write = hil_mlc_serio_write;
  758. mlc->serio[i].open = hil_mlc_serio_open;
  759. mlc->serio[i].close = hil_mlc_serio_close;
  760. mlc->serio[i].driver = &(mlc->serio_map[i]);
  761. mlc->serio_map[i].mlc = mlc;
  762. mlc->serio_map[i].didx = i;
  763. mlc->serio_map[i].di_revmap = -1;
  764. mlc->serio_opacket[i] = 0;
  765. mlc->serio_oidx[i] = 0;
  766. serio_register_port(&(mlc->serio[i]));
  767. }
  768. mlc->tasklet = &hil_mlcs_tasklet;
  769. write_lock_irqsave(&hil_mlcs_lock, flags);
  770. list_add_tail(&mlc->list, &hil_mlcs);
  771. mlc->seidx = HILSEN_START;
  772. write_unlock_irqrestore(&hil_mlcs_lock, flags);
  773. tasklet_schedule(&hil_mlcs_tasklet);
  774. return 0;
  775. }
  776. int hil_mlc_unregister(hil_mlc *mlc) {
  777. struct list_head *tmp;
  778.         unsigned long flags;
  779. int i;
  780. if (mlc == NULL)
  781. return -EINVAL;
  782. write_lock_irqsave(&hil_mlcs_lock, flags);
  783. list_for_each(tmp, &hil_mlcs) {
  784. if (list_entry(tmp, hil_mlc, list) == mlc)
  785. goto found;
  786. }
  787. /* not found in list */
  788. write_unlock_irqrestore(&hil_mlcs_lock, flags);
  789. tasklet_schedule(&hil_mlcs_tasklet);
  790. return -ENODEV;
  791.  found:
  792. list_del(tmp);
  793.         write_unlock_irqrestore(&hil_mlcs_lock, flags);
  794. MOD_DEC_USE_COUNT;
  795. for (i = 0; i < HIL_MLC_DEVMEM; i++)
  796. serio_unregister_port(&(mlc->serio[i]));
  797. tasklet_schedule(&hil_mlcs_tasklet);
  798. return 0;
  799. }
  800. /**************************** Module interface *************************/
  801. static int __init hil_mlc_init(void)
  802. {
  803. init_timer(&hil_mlcs_kicker);
  804. hil_mlcs_kicker.expires = jiffies + HZ;
  805. hil_mlcs_kicker.function = &hil_mlcs_timer;
  806. add_timer(&hil_mlcs_kicker);
  807. tasklet_enable(&hil_mlcs_tasklet);
  808. return 0;
  809. }
  810.                 
  811. static void __exit hil_mlc_exit(void)
  812. {
  813. del_timer(&hil_mlcs_kicker);
  814. tasklet_disable(&hil_mlcs_tasklet);
  815. tasklet_kill(&hil_mlcs_tasklet);
  816. }
  817.                         
  818. module_init(hil_mlc_init);
  819. module_exit(hil_mlc_exit);