eeprom.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:12k
源码类别:

Linux/Unix编程

开发平台:

Unix_Linux

  1. /*
  2. drivers/net/tulip/eeprom.c
  3. Maintained by Jeff Garzik <jgarzik@mandrakesoft.com>
  4. Copyright 2000,2001  The Linux Kernel Team
  5. Written/copyright 1994-2001 by Donald Becker.
  6. This software may be used and distributed according to the terms
  7. of the GNU General Public License, incorporated herein by reference.
  8. Please refer to Documentation/DocBook/tulip.{pdf,ps,html}
  9. for more information on this driver, or visit the project
  10. Web page at http://sourceforge.net/projects/tulip/
  11. */
  12. #include "tulip.h"
  13. #include <linux/init.h>
  14. #include <asm/unaligned.h>
  15. /* Serial EEPROM section. */
  16. /* The main routine to parse the very complicated SROM structure.
  17.    Search www.digital.com for "21X4 SROM" to get details.
  18.    This code is very complex, and will require changes to support
  19.    additional cards, so I'll be verbose about what is going on.
  20.    */
  21. /* Known cards that have old-style EEPROMs. */
  22. static struct eeprom_fixup eeprom_fixups[] __devinitdata = {
  23.   {"Asante", 0, 0, 0x94, {0x1e00, 0x0000, 0x0800, 0x0100, 0x018c,
  24.   0x0000, 0x0000, 0xe078, 0x0001, 0x0050, 0x0018 }},
  25.   {"SMC9332DST", 0, 0, 0xC0, { 0x1e00, 0x0000, 0x0800, 0x041f,
  26.    0x0000, 0x009E, /* 10baseT */
  27.    0x0004, 0x009E, /* 10baseT-FD */
  28.    0x0903, 0x006D, /* 100baseTx */
  29.    0x0905, 0x006D, /* 100baseTx-FD */ }},
  30.   {"Cogent EM100", 0, 0, 0x92, { 0x1e00, 0x0000, 0x0800, 0x063f,
  31.  0x0107, 0x8021, /* 100baseFx */
  32.  0x0108, 0x8021, /* 100baseFx-FD */
  33.  0x0100, 0x009E, /* 10baseT */
  34.  0x0104, 0x009E, /* 10baseT-FD */
  35.  0x0103, 0x006D, /* 100baseTx */
  36.  0x0105, 0x006D, /* 100baseTx-FD */ }},
  37.   {"Maxtech NX-110", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x0513,
  38.    0x1001, 0x009E, /* 10base2, CSR12 0x10*/
  39.    0x0000, 0x009E, /* 10baseT */
  40.    0x0004, 0x009E, /* 10baseT-FD */
  41.    0x0303, 0x006D, /* 100baseTx, CSR12 0x03 */
  42.    0x0305, 0x006D, /* 100baseTx-FD CSR12 0x03 */}},
  43.   {"Accton EN1207", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x051F,
  44.   0x1B01, 0x0000, /* 10base2,   CSR12 0x1B */
  45.   0x0B00, 0x009E, /* 10baseT,   CSR12 0x0B */
  46.   0x0B04, 0x009E, /* 10baseT-FD,CSR12 0x0B */
  47.   0x1B03, 0x006D, /* 100baseTx, CSR12 0x1B */
  48.   0x1B05, 0x006D, /* 100baseTx-FD CSR12 0x1B */
  49.    }},
  50.   {"NetWinder", 0x00, 0x10, 0x57,
  51. /* Default media = MII
  52.  * MII block, reset sequence (3) = 0x0821 0x0000 0x0001, capabilities 0x01e1
  53.  */
  54. { 0x1e00, 0x0000, 0x000b, 0x8f01, 0x0103, 0x0300, 0x0821, 0x000, 0x0001, 0x0000, 0x01e1 }
  55.   },
  56.   {0, 0, 0, 0, {}}};
  57. static const char *block_name[] __devinitdata = {
  58. "21140 non-MII",
  59. "21140 MII PHY",
  60. "21142 Serial PHY",
  61. "21142 MII PHY",
  62. "21143 SYM PHY",
  63. "21143 reset method"
  64. };
  65. /**
  66.  * tulip_build_fake_mediatable - Build a fake mediatable entry.
  67.  * @tp: Ptr to the tulip private data.
  68.  *
  69.  * Some cards like the 3x5 HSC cards (J3514A) do not have a standard 
  70.  * srom and can not be handled under the fixup routine.  These cards
  71.  * still need a valid mediatable entry for correct csr12 setup and 
  72.  * mii handling.
  73.  * 
  74.  * Since this is currently a parisc-linux specific function, the
  75.  * #ifdef __hppa__ should completely optimize this function away for
  76.  * non-parisc hardware.
  77.  */
  78. static void __devinit tulip_build_fake_mediatable(struct tulip_private *tp)
  79. {
  80. #ifdef __hppa__
  81. unsigned char *ee_data = tp->eeprom;
  82. if (ee_data[0] == 0x3c && ee_data[1] == 0x10 && 
  83. (ee_data[2] == 0x63 || ee_data[2] == 0x61) && ee_data[3] == 0x10) {
  84. static unsigned char leafdata[] =
  85. { 0x01,       /* phy number */
  86.   0x02,       /* gpr setup sequence length */
  87.   0x02, 0x00, /* gpr setup sequence */
  88.   0x02,       /* phy reset sequence length */
  89.   0x01, 0x00, /* phy reset sequence */
  90.   0x00, 0x78, /* media capabilities */
  91.   0x00, 0xe0, /* nway advertisment */
  92.   0x00, 0x05, /* fdx bit map */
  93.   0x00, 0x06  /* ttm bit map */
  94. };
  95. tp->mtable = (struct mediatable *)
  96. kmalloc(sizeof(struct mediatable) + sizeof(struct medialeaf), GFP_KERNEL);
  97. if (tp->mtable == NULL)
  98. return; /* Horrible, impossible failure. */
  99. tp->mtable->defaultmedia = 0x800;
  100. tp->mtable->leafcount = 1;
  101. tp->mtable->csr12dir = 0x3f; /* inputs on bit7 for hsc-pci, bit6 for pci-fx */
  102. tp->mtable->has_nonmii = 0;
  103. tp->mtable->has_reset = 0;
  104. tp->mtable->has_mii = 1;
  105. tp->mtable->csr15dir = tp->mtable->csr15val = 0;
  106. tp->mtable->mleaf[0].type = 1;
  107. tp->mtable->mleaf[0].media = 11;
  108. tp->mtable->mleaf[0].leafdata = &leafdata[0];
  109. tp->flags |= HAS_PHY_IRQ;
  110. tp->csr12_shadow = -1;
  111. }
  112. #endif 
  113. }
  114. void __devinit tulip_parse_eeprom(struct net_device *dev)
  115. {
  116. /* The last media info list parsed, for multiport boards.  */
  117. static struct mediatable *last_mediatable;
  118. static unsigned char *last_ee_data;
  119. static int controller_index;
  120. struct tulip_private *tp = (struct tulip_private *)dev->priv;
  121. unsigned char *ee_data = tp->eeprom;
  122. int i;
  123. tp->mtable = 0;
  124. /* Detect an old-style (SA only) EEPROM layout:
  125.    memcmp(eedata, eedata+16, 8). */
  126. for (i = 0; i < 8; i ++)
  127. if (ee_data[i] != ee_data[16+i])
  128. break;
  129. if (i >= 8) {
  130. if (ee_data[0] == 0xff) {
  131. if (last_mediatable) {
  132. controller_index++;
  133. printk(KERN_INFO "%s:  Controller %d of multiport board.n",
  134.    dev->name, controller_index);
  135. tp->mtable = last_mediatable;
  136. ee_data = last_ee_data;
  137. goto subsequent_board;
  138. } else
  139. printk(KERN_INFO "%s:  Missing EEPROM, this interface may "
  140.    "not work correctly!n",
  141.    dev->name);
  142. return;
  143. }
  144.   /* Do a fix-up based on the vendor half of the station address prefix. */
  145.   for (i = 0; eeprom_fixups[i].name; i++) {
  146. if (dev->dev_addr[0] == eeprom_fixups[i].addr0
  147. &&  dev->dev_addr[1] == eeprom_fixups[i].addr1
  148. &&  dev->dev_addr[2] == eeprom_fixups[i].addr2) {
  149.   if (dev->dev_addr[2] == 0xE8  &&  ee_data[0x1a] == 0x55)
  150.   i++; /* An Accton EN1207, not an outlaw Maxtech. */
  151.   memcpy(ee_data + 26, eeprom_fixups[i].newtable,
  152.  sizeof(eeprom_fixups[i].newtable));
  153.   printk(KERN_INFO "%s: Old format EEPROM on '%s' board.  Using"
  154.  " substitute media control info.n",
  155.  dev->name, eeprom_fixups[i].name);
  156.   break;
  157. }
  158.   }
  159.   if (eeprom_fixups[i].name == NULL) { /* No fixup found. */
  160.   printk(KERN_INFO "%s: Old style EEPROM with no media selection "
  161.  "information.n",
  162.    dev->name);
  163. return;
  164.   }
  165. }
  166. controller_index = 0;
  167. if (ee_data[19] > 1) { /* Multiport board. */
  168. last_ee_data = ee_data;
  169. }
  170. subsequent_board:
  171. if (ee_data[27] == 0) { /* No valid media table. */
  172. tulip_build_fake_mediatable(tp);
  173. } else if (tp->chip_id == DC21041) {
  174. unsigned char *p = (void *)ee_data + ee_data[27 + controller_index*3];
  175. int media = get_u16(p);
  176. int count = p[2];
  177. p += 3;
  178. printk(KERN_INFO "%s: 21041 Media table, default media %4.4x (%s).n",
  179.    dev->name, media,
  180.    media & 0x0800 ? "Autosense" : medianame[media & MEDIA_MASK]);
  181. for (i = 0; i < count; i++) {
  182. unsigned char media_block = *p++;
  183. int media_code = media_block & MEDIA_MASK;
  184. if (media_block & 0x40)
  185. p += 6;
  186. printk(KERN_INFO "%s:  21041 media #%d, %s.n",
  187.    dev->name, media_code, medianame[media_code]);
  188. }
  189. } else {
  190. unsigned char *p = (void *)ee_data + ee_data[27];
  191. unsigned char csr12dir = 0;
  192. int count, new_advertise = 0;
  193. struct mediatable *mtable;
  194. u16 media = get_u16(p);
  195. p += 2;
  196. if (tp->flags & CSR12_IN_SROM)
  197. csr12dir = *p++;
  198. count = *p++;
  199.         /* there is no phy information, don't even try to build mtable */
  200.         if (count == 0) {
  201. if (tulip_debug > 0)
  202. printk(KERN_WARNING "%s: no phy info, aborting mtable buildn", dev->name);
  203.         return;
  204. }
  205. mtable = (struct mediatable *)
  206. kmalloc(sizeof(struct mediatable) + count*sizeof(struct medialeaf),
  207. GFP_KERNEL);
  208. if (mtable == NULL)
  209. return; /* Horrible, impossible failure. */
  210. last_mediatable = tp->mtable = mtable;
  211. mtable->defaultmedia = media;
  212. mtable->leafcount = count;
  213. mtable->csr12dir = csr12dir;
  214. mtable->has_nonmii = mtable->has_mii = mtable->has_reset = 0;
  215. mtable->csr15dir = mtable->csr15val = 0;
  216. printk(KERN_INFO "%s:  EEPROM default media type %s.n", dev->name,
  217.    media & 0x0800 ? "Autosense" : medianame[media & MEDIA_MASK]);
  218. for (i = 0; i < count; i++) {
  219. struct medialeaf *leaf = &mtable->mleaf[i];
  220. if ((p[0] & 0x80) == 0) { /* 21140 Compact block. */
  221. leaf->type = 0;
  222. leaf->media = p[0] & 0x3f;
  223. leaf->leafdata = p;
  224. if ((p[2] & 0x61) == 0x01) /* Bogus, but Znyx boards do it. */
  225. mtable->has_mii = 1;
  226. p += 4;
  227. } else {
  228. leaf->type = p[1];
  229. if (p[1] == 0x05) {
  230. mtable->has_reset = i;
  231. leaf->media = p[2] & 0x0f;
  232. } else if (tp->chip_id == DM910X && p[1] == 0x80) {
  233. /* Hack to ignore Davicom delay period block */
  234. mtable->leafcount--;
  235. count--;
  236. i--;
  237. leaf->leafdata = p + 2;
  238. p += (p[0] & 0x3f) + 1;
  239. continue;
  240. } else if (p[1] & 1) {
  241. int gpr_len, reset_len;
  242. mtable->has_mii = 1;
  243. leaf->media = 11;
  244. gpr_len=p[3]*2;
  245. reset_len=p[4+gpr_len]*2;
  246. new_advertise |= get_u16(&p[7+gpr_len+reset_len]);
  247. } else {
  248. mtable->has_nonmii = 1;
  249. leaf->media = p[2] & MEDIA_MASK;
  250. /* Davicom's media number for 100BaseTX is strange */
  251. if (tp->chip_id == DM910X && leaf->media == 1)
  252. leaf->media = 3;
  253. switch (leaf->media) {
  254. case 0: new_advertise |= 0x0020; break;
  255. case 4: new_advertise |= 0x0040; break;
  256. case 3: new_advertise |= 0x0080; break;
  257. case 5: new_advertise |= 0x0100; break;
  258. case 6: new_advertise |= 0x0200; break;
  259. }
  260. if (p[1] == 2  &&  leaf->media == 0) {
  261. if (p[2] & 0x40) {
  262. u32 base15 = get_unaligned((u16*)&p[7]);
  263. mtable->csr15dir =
  264. (get_unaligned((u16*)&p[9])<<16) + base15;
  265. mtable->csr15val =
  266. (get_unaligned((u16*)&p[11])<<16) + base15;
  267. } else {
  268. mtable->csr15dir = get_unaligned((u16*)&p[3])<<16;
  269. mtable->csr15val = get_unaligned((u16*)&p[5])<<16;
  270. }
  271. }
  272. }
  273. leaf->leafdata = p + 2;
  274. p += (p[0] & 0x3f) + 1;
  275. }
  276. if (tulip_debug > 1  &&  leaf->media == 11) {
  277. unsigned char *bp = leaf->leafdata;
  278. printk(KERN_INFO "%s:  MII interface PHY %d, setup/reset "
  279.    "sequences %d/%d long, capabilities %2.2x %2.2x.n",
  280.    dev->name, bp[0], bp[1], bp[2 + bp[1]*2],
  281.    bp[5 + bp[2 + bp[1]*2]*2], bp[4 + bp[2 + bp[1]*2]*2]);
  282. }
  283. printk(KERN_INFO "%s:  Index #%d - Media %s (#%d) described "
  284.    "by a %s (%d) block.n",
  285.    dev->name, i, medianame[leaf->media & 15], leaf->media,
  286.    leaf->type < ARRAY_SIZE(block_name) ? block_name[leaf->type] : "<unknown>",
  287.    leaf->type);
  288. }
  289. if (new_advertise)
  290. tp->sym_advertise = new_advertise;
  291. }
  292. }
  293. /* Reading a serial EEPROM is a "bit" grungy, but we work our way through:->.*/
  294. /*  EEPROM_Ctrl bits. */
  295. #define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */
  296. #define EE_CS 0x01 /* EEPROM chip select. */
  297. #define EE_DATA_WRITE 0x04 /* Data from the Tulip to EEPROM. */
  298. #define EE_WRITE_0 0x01
  299. #define EE_WRITE_1 0x05
  300. #define EE_DATA_READ 0x08 /* Data from the EEPROM chip. */
  301. #define EE_ENB (0x4800 | EE_CS)
  302. /* Delay between EEPROM clock transitions.
  303.    Even at 33Mhz current PCI implementations don't overrun the EEPROM clock.
  304.    We add a bus turn-around to insure that this remains true. */
  305. #define eeprom_delay() inl(ee_addr)
  306. /* The EEPROM commands include the alway-set leading bit. */
  307. #define EE_READ_CMD (6)
  308. /* Note: this routine returns extra data bits for size detection. */
  309. int __devinit tulip_read_eeprom(long ioaddr, int location, int addr_len)
  310. {
  311. int i;
  312. unsigned retval = 0;
  313. long ee_addr = ioaddr + CSR9;
  314. int read_cmd = location | (EE_READ_CMD << addr_len);
  315. outl(EE_ENB & ~EE_CS, ee_addr);
  316. outl(EE_ENB, ee_addr);
  317. /* Shift the read command bits out. */
  318. for (i = 4 + addr_len; i >= 0; i--) {
  319. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  320. outl(EE_ENB | dataval, ee_addr);
  321. eeprom_delay();
  322. outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
  323. eeprom_delay();
  324. retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
  325. }
  326. outl(EE_ENB, ee_addr);
  327. eeprom_delay();
  328. for (i = 16; i > 0; i--) {
  329. outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
  330. eeprom_delay();
  331. retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
  332. outl(EE_ENB, ee_addr);
  333. eeprom_delay();
  334. }
  335. /* Terminate the EEPROM access. */
  336. outl(EE_ENB & ~EE_CS, ee_addr);
  337. return retval;
  338. }