svkernel.m
资源名称:SVM--SVM.rar [点击查看]
上传用户:liu_jing
上传日期:2013-07-02
资源大小:4k
文件大小:3k
源码类别:
数值算法/人工智能
开发平台:
Matlab
- function k = svkernel(ker,u,v)
- %SVKERNEL kernel for Support Vector Methods
- %
- % Usage: k = svkernel(ker,u,v)
- %
- % Parameters: ker - kernel type
- % u,v - kernel arguments
- %
- % Values for ker: 'linear' -
- % 'poly' - p1 is degree of polynomial
- % 'rbf' - p1 is width of rbfs (sigma)
- % 'sigmoid' - p1 is scale, p2 is offset
- % 'spline' -
- % 'bspline' - p1 is degree of bspline
- % 'fourier' - p1 is degree
- % 'erfb' - p1 is width of rbfs (sigma)
- % 'anova' - p1 is max order of terms
- %
- % Author: Steve Gunn (srg@ecs.soton.ac.uk)
- if (nargin < 1) % check correct number of arguments
- help svkernel
- else
- global p1 p2;
- p1=2.75;p2=0.8;
- % could check for correct number of args in here
- % but will slow things down further
- switch lower(ker)
- case 'linear'
- k = u*v';
- case 'poly'
- k = (u*v' + 1)^p1;
- case 'rbf'
- k = exp(-(u-v)*(u-v)'/(2*p1^2));
- case 'erbf'
- k = exp(-sqrt((u-v)*(u-v)')/(2*p1^2));
- case 'sigmoid'
- k = tanh(p1*u*v'/length(u) + p2);
- case 'fourier'
- z = sin(p1 + 1/2)*2*ones(length(u),1);
- i = find(u-v);
- z(i) = sin(p1 + 1/2)*(u(i)-v(i))./sin((u(i)-v(i))/2);
- k = prod(z);
- case 'spline'
- z = 1 + u.*v + (1/2)*u.*v.*min(u,v) - (1/6)*(min(u,v)).^3;
- k = prod(z);
- case 'bspline'
- z = 0;
- for r = 0: 2*(p1+1)
- z = z + (-1)^r*binomial(2*(p1+1),r)*(max(0,u-v + p1+1 - r)).^(2*p1 + 1);
- end
- k = prod(z);
- case 'anovaspline1'
- z = 1 + u.*v + u.*v.*min(u,v) - ((u+v)/2).*(min(u,v)).^2 + (1/3)*(min(u,v)).^3;
- k = prod(z);
- case 'anovaspline2'
- z = 1 + u.*v + (u.*v).^2 + (u.*v).^2.*min(u,v) - u.*v.*(u+v).*(min(u,v)).^2 + (1/3)*(u.^2 + 4*u.*v + v.^2).*(min(u,v)).^3 - (1/2)*(u+v).*(min(u,v)).^4 + (1/5)*(min(u,v)).^5;
- k = prod(z);
- case 'anovaspline3'
- z = 1 + u.*v + (u.*v).^2 + (u.*v).^3 + (u.*v).^3.*min(u,v) - (3/2)*(u.*v).^2.*(u+v).*(min(u,v)).^2 + u.*v.*(u.^2 + 3*u.*v + v.^2).*(min(u,v)).^3 - (1/4)*(u.^3 + 9*u.^2.*v + 9*u.*v.^2 + v.^3).*(min(u,v)).^4 + (3/5)*(u.^2 + 3*u.*v + v.^2).*(min(u,v)).^5 - (1/2)*(u+v).*(min(u,v)).^6 + (1/7)*(min(u,v)).^7;
- k = prod(z);
- case 'anovabspline'
- z = 0;
- for r = 0: 2*(p1+1)
- z = z + (-1)^r*binomial(2*(p1+1),r)*(max(0,u-v + p1+1 - r)).^(2*p1 + 1);
- end
- k = prod(1 + z);
- otherwise
- k = u*v';
- end
- end