MD5.cpp
上传用户:woshihumen
上传日期:2013-07-18
资源大小:484k
文件大小:13k
源码类别:

Email服务器

开发平台:

Visual C++

  1. /*
  2.  *  XMail by Davide Libenzi ( Intranet and Internet mail server )
  3.  *  Copyright (C) 1999,..,2004  Davide Libenzi
  4.  *
  5.  *  This program is free software; you can redistribute it and/or modify
  6.  *  it under the terms of the GNU General Public License as published by
  7.  *  the Free Software Foundation; either version 2 of the License, or
  8.  *  (at your option) any later version.
  9.  *
  10.  *  This program is distributed in the hope that it will be useful,
  11.  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12.  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13.  *  GNU General Public License for more details.
  14.  *
  15.  *  You should have received a copy of the GNU General Public License
  16.  *  along with this program; if not, write to the Free Software
  17.  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18.  *
  19.  *  Written by      Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995
  20.  *  Written by      Glynn Clements <glynn@sensei.co.uk>, 1997
  21.  *  Modified by     Davide Libenzi <davidel@xmailserver.org>, 2000
  22.  *
  23.  */
  24. #include "SysInclude.h"
  25. #include "SysDep.h"
  26. #include "SvrDefines.h"
  27. #include "MD5.h"
  28. #ifdef BIG_ENDIAN_CPU
  29. #define WORDS_BIG_ENDIAN
  30. #endif
  31. #ifdef WORDS_BIG_ENDIAN
  32. #define SWAP(n)                     
  33.         (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
  34. #else
  35. #define SWAP(n)                     (n)
  36. #endif
  37. /* This array contains the bytes used to pad the buffer to the next
  38.    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
  39. static unsigned char fillbuf[64] = {
  40. 0x80, 0, 0, 0, 0, 0, 0, 0,
  41. 0, 0, 0, 0, 0, 0, 0, 0,
  42. 0, 0, 0, 0, 0, 0, 0, 0,
  43. 0, 0, 0, 0, 0, 0, 0, 0,
  44. 0, 0, 0, 0, 0, 0, 0, 0,
  45. 0, 0, 0, 0, 0, 0, 0, 0,
  46. 0, 0, 0, 0, 0, 0, 0, 0,
  47. 0, 0, 0, 0, 0, 0, 0, 0
  48. };
  49. /* Initialize structure containing state of computation.
  50.    (RFC 1321, 3.3: Step 3)  */
  51. void md5_init_ctx(struct md5_ctx *ctx)
  52. {
  53. ctx->A = 0x67452301;
  54. ctx->B = 0xefcdab89;
  55. ctx->C = 0x98badcfe;
  56. ctx->D = 0x10325476;
  57. ctx->total[0] = ctx->total[1] = 0;
  58. ctx->buflen = 0;
  59. }
  60. /* Put result from CTX in first 16 bytes following RESBUF.  The result
  61.    must be in little endian byte order.
  62.    IMPORTANT: On some systems it is required that RESBUF is correctly
  63.    aligned for a 32 bits value.  */
  64. void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
  65. {
  66. ((md5_uint32 *) resbuf)[0] = SWAP(ctx->A);
  67. ((md5_uint32 *) resbuf)[1] = SWAP(ctx->B);
  68. ((md5_uint32 *) resbuf)[2] = SWAP(ctx->C);
  69. ((md5_uint32 *) resbuf)[3] = SWAP(ctx->D);
  70. return resbuf;
  71. }
  72. /* Process the remaining bytes in the internal buffer and the usual
  73.    prolog according to the standard and write the result to RESBUF.
  74.    IMPORTANT: On some systems it is required that RESBUF is correctly
  75.    aligned for a 32 bits value.  */
  76. void *md5_finish_ctx(struct md5_ctx *ctx, void *resbuf)
  77. {
  78. /* Take yet unprocessed bytes into account.  */
  79. md5_uint32 bytes = ctx->buflen;
  80. size_t pad;
  81. /* Now count remaining bytes.  */
  82. ctx->total[0] += bytes;
  83. if (ctx->total[0] < bytes)
  84. ++ctx->total[1];
  85. pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
  86. memcpy(&ctx->buffer[bytes], fillbuf, pad);
  87. /* Put the 64-bit file length in *bits* at the end of the buffer.  */
  88. *(md5_uint32 *) & ctx->buffer[bytes + pad] = SWAP(ctx->total[0] << 3);
  89. *(md5_uint32 *) & ctx->buffer[bytes + pad + 4] = SWAP((ctx->total[1] << 3) |
  90.       (ctx->total[0] >> 29));
  91. /* Process last bytes.  */
  92. md5_process_block(ctx->buffer, bytes + pad + 8, ctx);
  93. return md5_read_ctx(ctx, resbuf);
  94. }
  95. /* Compute MD5 message digest for bytes read from STREAM.  The
  96.    resulting message digest number will be written into the 16 bytes
  97.    beginning at RESBLOCK.  */
  98. int md5_stream(FILE * stream, void *resblock)
  99. {
  100. /* Important: BLOCKSIZE must be a multiple of 64.  */
  101. #define BLOCKSIZE 4096
  102. struct md5_ctx ctx;
  103. char buffer[BLOCKSIZE + 72];
  104. size_t sum;
  105. /* Initialize the computation context.  */
  106. md5_init_ctx(&ctx);
  107. /* Iterate over full file contents.  */
  108. while (1) {
  109. /* We read the file in blocks of BLOCKSIZE bytes.  One call of the computation
  110.    function processes the whole buffer so that with the next round of the loop
  111.    another block can be read.  */
  112. size_t n;
  113. sum = 0;
  114. /* Read block.  Take care for partial reads.  */
  115. do {
  116. n = fread(buffer + sum, 1, BLOCKSIZE - sum, stream);
  117. sum += n;
  118. }
  119. while (sum < BLOCKSIZE && n != 0);
  120. if (n == 0 && ferror(stream))
  121. return 1;
  122. /* If end of file is reached, end the loop.  */
  123. if (n == 0)
  124. break;
  125. /* Process buffer with BLOCKSIZE bytes.  Note that BLOCKSIZE % 64 == 0 */
  126. md5_process_block(buffer, BLOCKSIZE, &ctx);
  127. }
  128. /* Add the last bytes if necessary.  */
  129. if (sum > 0)
  130. md5_process_bytes(buffer, sum, &ctx);
  131. /* Construct result in desired memory.  */
  132. md5_finish_ctx(&ctx, resblock);
  133. return 0;
  134. }
  135. /* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
  136.    result is always in little endian byte order, so that a byte-wise
  137.    output yields to the wanted ASCII representation of the message
  138.    digest.  */
  139. void *md5_buffer(const char *buffer, size_t len, void *resblock)
  140. {
  141. struct md5_ctx ctx;
  142. /* Initialize the computation context.  */
  143. md5_init_ctx(&ctx);
  144. /* Process whole buffer but last len % 64 bytes.  */
  145. md5_process_bytes(buffer, len, &ctx);
  146. /* Put result in desired memory area.  */
  147. return md5_finish_ctx(&ctx, resblock);
  148. }
  149. void md5_process_bytes(const void *buffer, size_t len, struct md5_ctx *ctx)
  150. {
  151. /* When we already have some bits in our internal buffer concatenate both
  152.    inputs first.  */
  153. if (ctx->buflen != 0) {
  154. size_t left_over = ctx->buflen;
  155. size_t add = 128 - left_over > len ? len : 128 - left_over;
  156. memcpy(&ctx->buffer[left_over], buffer, add);
  157. ctx->buflen += add;
  158. if (left_over + add > 64) {
  159. md5_process_block(ctx->buffer, (left_over + add) & ~63, ctx);
  160. /* The regions in the following copy operation cannot overlap.  */
  161. memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
  162.        (left_over + add) & 63);
  163. ctx->buflen = (left_over + add) & 63;
  164. }
  165. buffer = (const char *) buffer + add;
  166. len -= add;
  167. }
  168. /* Process available complete blocks.  */
  169. if (len > 64) {
  170. md5_process_block(buffer, len & ~63, ctx);
  171. buffer = (const char *) buffer + (len & ~63);
  172. len &= 63;
  173. }
  174. /* Move remaining bytes in internal buffer.  */
  175. if (len > 0) {
  176. memcpy(ctx->buffer, buffer, len);
  177. ctx->buflen = len;
  178. }
  179. }
  180. /* These are the four functions used in the four steps of the MD5 algorithm
  181.    and defined in the RFC 1321.  The first function is a little bit optimized
  182.    (as found in Colin Plumbs public domain implementation).  */
  183. /* #define FF(b, c, d) ((b & c) | (~b & d)) */
  184. #define FF(b, c, d)             (d ^ (b & (c ^ d)))
  185. #define FG(b, c, d)             FF(d, b, c)
  186. #define FH(b, c, d)             (b ^ c ^ d)
  187. #define FI(b, c, d)             (c ^ (b | ~d))
  188. /* Process LEN bytes of BUFFER, accumulating context into CTX.
  189.    It is assumed that LEN % 64 == 0.  */
  190. void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx)
  191. {
  192. md5_uint32 correct_words[16];
  193. const md5_uint32 *words = (const md5_uint32 *) buffer;
  194. size_t nwords = len / sizeof(md5_uint32);
  195. const md5_uint32 *endp = words + nwords;
  196. md5_uint32 A = ctx->A;
  197. md5_uint32 B = ctx->B;
  198. md5_uint32 C = ctx->C;
  199. md5_uint32 D = ctx->D;
  200. /* First increment the byte count.  RFC 1321 specifies the possible length of
  201.    the file up to 2^64 bits.  Here we only compute the number of bytes.  Do a
  202.    double word increment.  */
  203. ctx->total[0] += len;
  204. if (ctx->total[0] < len)
  205. ++ctx->total[1];
  206. /* Process all bytes in the buffer with 64 bytes in each round of the loop.  */
  207. while (words < endp) {
  208. md5_uint32 *cwp = correct_words;
  209. md5_uint32 A_save = A;
  210. md5_uint32 B_save = B;
  211. md5_uint32 C_save = C;
  212. md5_uint32 D_save = D;
  213. /* First round: using the given function, the context and a constant the next
  214.    context is computed.  Because the algorithms processing unit is a 32-bit
  215.    word and it is determined to work on words in little endian byte order we
  216.    perhaps have to change the byte order before the computation.  To reduce
  217.    the work for the next steps we store the swapped words in the array
  218.    CORRECT_WORDS.  */
  219. #define OP(a, b, c, d, s, T)
  220.       do
  221.         {
  222.   a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;
  223.   ++words;
  224.   CYCLIC (a, s);
  225.   a += b;
  226.         }
  227.       while (0)
  228. /* It is unfortunate that C does not provide an operator for cyclic rotation.
  229.    Hope the C compiler is smart enough.  */
  230. #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
  231. /* Before we start, one word to the strange constants. They are defined in RFC
  232.    1321 as
  233.    T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 */
  234. /* Round 1.  */
  235. OP(A, B, C, D, 7, 0xd76aa478);
  236. OP(D, A, B, C, 12, 0xe8c7b756);
  237. OP(C, D, A, B, 17, 0x242070db);
  238. OP(B, C, D, A, 22, 0xc1bdceee);
  239. OP(A, B, C, D, 7, 0xf57c0faf);
  240. OP(D, A, B, C, 12, 0x4787c62a);
  241. OP(C, D, A, B, 17, 0xa8304613);
  242. OP(B, C, D, A, 22, 0xfd469501);
  243. OP(A, B, C, D, 7, 0x698098d8);
  244. OP(D, A, B, C, 12, 0x8b44f7af);
  245. OP(C, D, A, B, 17, 0xffff5bb1);
  246. OP(B, C, D, A, 22, 0x895cd7be);
  247. OP(A, B, C, D, 7, 0x6b901122);
  248. OP(D, A, B, C, 12, 0xfd987193);
  249. OP(C, D, A, B, 17, 0xa679438e);
  250. OP(B, C, D, A, 22, 0x49b40821);
  251. /* For the second to fourth round we have the possibly swapped words in
  252.    CORRECT_WORDS.  Redefine the macro to take an additional first argument
  253.    specifying the function to use.  */
  254. #undef OP
  255. #define OP(f, a, b, c, d, k, s, T)
  256.       do 
  257. {
  258.   a += f (b, c, d) + correct_words[k] + T;
  259.   CYCLIC (a, s);
  260.   a += b;
  261. }
  262.       while (0)
  263. /* Round 2.  */
  264. OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
  265. OP(FG, D, A, B, C, 6, 9, 0xc040b340);
  266. OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
  267. OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
  268. OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
  269. OP(FG, D, A, B, C, 10, 9, 0x02441453);
  270. OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
  271. OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
  272. OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
  273. OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
  274. OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
  275. OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
  276. OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
  277. OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
  278. OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
  279. OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
  280. /* Round 3.  */
  281. OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
  282. OP(FH, D, A, B, C, 8, 11, 0x8771f681);
  283. OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
  284. OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
  285. OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
  286. OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
  287. OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
  288. OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
  289. OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
  290. OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
  291. OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
  292. OP(FH, B, C, D, A, 6, 23, 0x04881d05);
  293. OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
  294. OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
  295. OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
  296. OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
  297. /* Round 4.  */
  298. OP(FI, A, B, C, D, 0, 6, 0xf4292244);
  299. OP(FI, D, A, B, C, 7, 10, 0x432aff97);
  300. OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
  301. OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
  302. OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
  303. OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
  304. OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
  305. OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
  306. OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
  307. OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
  308. OP(FI, C, D, A, B, 6, 15, 0xa3014314);
  309. OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
  310. OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
  311. OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
  312. OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
  313. OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
  314. /* Add the starting values of the context.  */
  315. A += A_save;
  316. B += B_save;
  317. C += C_save;
  318. D += D_save;
  319. }
  320. /* Put checksum in context given as argument.  */
  321. ctx->A = A;
  322. ctx->B = B;
  323. ctx->C = C;
  324. ctx->D = D;
  325. }
  326. void md5_hex(unsigned char *src, char *dst)
  327. {
  328. unsigned i, c;
  329. static const char hex[] = "0123456789abcdef";
  330. for (i = 0; i < 16; i++) {
  331. c = src[i];
  332. dst[i * 2 + 0] = hex[c >> 4];
  333. dst[i * 2 + 1] = hex[c & 0x0F];
  334. }
  335. dst[32] = '';
  336. }
  337. void do_md5_file(FILE * src, long start, long bytes, char *hash)
  338. {
  339. struct md5_ctx ctx;
  340. char buff[1024];
  341. unsigned char result[16];
  342. int n;
  343. md5_init_ctx(&ctx);
  344. fseek(src, start, SEEK_SET);
  345. while (bytes > 0) {
  346. n = fread(buff, 1, Min(bytes, sizeof(buff)), src);
  347. if (n <= 0)
  348. break;
  349. md5_process_bytes(buff, n, &ctx);
  350. bytes -= n;
  351. }
  352. md5_finish_ctx(&ctx, result);
  353. md5_hex(result, hash);
  354. }
  355. void do_md5_string(char *pass, int passlen, char *hash)
  356. {
  357. struct md5_ctx ctx;
  358. unsigned char result[16];
  359. md5_init_ctx(&ctx);
  360. md5_process_bytes(pass, passlen, &ctx);
  361. md5_finish_ctx(&ctx, result);
  362. md5_hex(result, hash);
  363. }