algorithm.txt
上传用户:dangjiwu
上传日期:2013-07-19
资源大小:42019k
文件大小:10k
源码类别:

Symbian

开发平台:

Visual C++

  1. 1. Compression algorithm (deflate)
  2. The deflation algorithm used by gzip (also zip and zlib) is a variation of
  3. LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
  4. the input data.  The second occurrence of a string is replaced by a
  5. pointer to the previous string, in the form of a pair (distance,
  6. length).  Distances are limited to 32K bytes, and lengths are limited
  7. to 258 bytes. When a string does not occur anywhere in the previous
  8. 32K bytes, it is emitted as a sequence of literal bytes.  (In this
  9. description, `string' must be taken as an arbitrary sequence of bytes,
  10. and is not restricted to printable characters.)
  11. Literals or match lengths are compressed with one Huffman tree, and
  12. match distances are compressed with another tree. The trees are stored
  13. in a compact form at the start of each block. The blocks can have any
  14. size (except that the compressed data for one block must fit in
  15. available memory). A block is terminated when deflate() determines that
  16. it would be useful to start another block with fresh trees. (This is
  17. somewhat similar to the behavior of LZW-based _compress_.)
  18. Duplicated strings are found using a hash table. All input strings of
  19. length 3 are inserted in the hash table. A hash index is computed for
  20. the next 3 bytes. If the hash chain for this index is not empty, all
  21. strings in the chain are compared with the current input string, and
  22. the longest match is selected.
  23. The hash chains are searched starting with the most recent strings, to
  24. favor small distances and thus take advantage of the Huffman encoding.
  25. The hash chains are singly linked. There are no deletions from the
  26. hash chains, the algorithm simply discards matches that are too old.
  27. To avoid a worst-case situation, very long hash chains are arbitrarily
  28. truncated at a certain length, determined by a runtime option (level
  29. parameter of deflateInit). So deflate() does not always find the longest
  30. possible match but generally finds a match which is long enough.
  31. deflate() also defers the selection of matches with a lazy evaluation
  32. mechanism. After a match of length N has been found, deflate() searches for
  33. a longer match at the next input byte. If a longer match is found, the
  34. previous match is truncated to a length of one (thus producing a single
  35. literal byte) and the process of lazy evaluation begins again. Otherwise,
  36. the original match is kept, and the next match search is attempted only N
  37. steps later.
  38. The lazy match evaluation is also subject to a runtime parameter. If
  39. the current match is long enough, deflate() reduces the search for a longer
  40. match, thus speeding up the whole process. If compression ratio is more
  41. important than speed, deflate() attempts a complete second search even if
  42. the first match is already long enough.
  43. The lazy match evaluation is not performed for the fastest compression
  44. modes (level parameter 1 to 3). For these fast modes, new strings
  45. are inserted in the hash table only when no match was found, or
  46. when the match is not too long. This degrades the compression ratio
  47. but saves time since there are both fewer insertions and fewer searches.
  48. 2. Decompression algorithm (inflate)
  49. 2.1 Introduction
  50. The real question is, given a Huffman tree, how to decode fast.  The most
  51. important realization is that shorter codes are much more common than
  52. longer codes, so pay attention to decoding the short codes fast, and let
  53. the long codes take longer to decode.
  54. inflate() sets up a first level table that covers some number of bits of
  55. input less than the length of longest code.  It gets that many bits from the
  56. stream, and looks it up in the table.  The table will tell if the next
  57. code is that many bits or less and how many, and if it is, it will tell
  58. the value, else it will point to the next level table for which inflate()
  59. grabs more bits and tries to decode a longer code.
  60. How many bits to make the first lookup is a tradeoff between the time it
  61. takes to decode and the time it takes to build the table.  If building the
  62. table took no time (and if you had infinite memory), then there would only
  63. be a first level table to cover all the way to the longest code.  However,
  64. building the table ends up taking a lot longer for more bits since short
  65. codes are replicated many times in such a table.  What inflate() does is
  66. simply to make the number of bits in the first table a variable, and set it
  67. for the maximum speed.
  68. inflate() sends new trees relatively often, so it is possibly set for a
  69. smaller first level table than an application that has only one tree for
  70. all the data.  For inflate, which has 286 possible codes for the
  71. literal/length tree, the size of the first table is nine bits.  Also the
  72. distance trees have 30 possible values, and the size of the first table is
  73. six bits.  Note that for each of those cases, the table ended up one bit
  74. longer than the ``average'' code length, i.e. the code length of an
  75. approximately flat code which would be a little more than eight bits for
  76. 286 symbols and a little less than five bits for 30 symbols.  It would be
  77. interesting to see if optimizing the first level table for other
  78. applications gave values within a bit or two of the flat code size.
  79. 2.2 More details on the inflate table lookup
  80. Ok, you want to know what this cleverly obfuscated inflate tree actually  
  81. looks like.  You are correct that it's not a Huffman tree.  It is simply a  
  82. lookup table for the first, let's say, nine bits of a Huffman symbol.  The  
  83. symbol could be as short as one bit or as long as 15 bits.  If a particular  
  84. symbol is shorter than nine bits, then that symbol's translation is duplicated
  85. in all those entries that start with that symbol's bits.  For example, if the  
  86. symbol is four bits, then it's duplicated 32 times in a nine-bit table.  If a  
  87. symbol is nine bits long, it appears in the table once.
  88. If the symbol is longer than nine bits, then that entry in the table points  
  89. to another similar table for the remaining bits.  Again, there are duplicated  
  90. entries as needed.  The idea is that most of the time the symbol will be short
  91. and there will only be one table look up.  (That's whole idea behind data  
  92. compression in the first place.)  For the less frequent long symbols, there  
  93. will be two lookups.  If you had a compression method with really long  
  94. symbols, you could have as many levels of lookups as is efficient.  For  
  95. inflate, two is enough.
  96. So a table entry either points to another table (in which case nine bits in  
  97. the above example are gobbled), or it contains the translation for the symbol  
  98. and the number of bits to gobble.  Then you start again with the next  
  99. ungobbled bit.
  100. You may wonder: why not just have one lookup table for how ever many bits the  
  101. longest symbol is?  The reason is that if you do that, you end up spending  
  102. more time filling in duplicate symbol entries than you do actually decoding.   
  103. At least for deflate's output that generates new trees every several 10's of  
  104. kbytes.  You can imagine that filling in a 2^15 entry table for a 15-bit code  
  105. would take too long if you're only decoding several thousand symbols.  At the  
  106. other extreme, you could make a new table for every bit in the code.  In fact,
  107. that's essentially a Huffman tree.  But then you spend two much time  
  108. traversing the tree while decoding, even for short symbols.
  109. So the number of bits for the first lookup table is a trade of the time to  
  110. fill out the table vs. the time spent looking at the second level and above of
  111. the table.
  112. Here is an example, scaled down:
  113. The code being decoded, with 10 symbols, from 1 to 6 bits long:
  114. A: 0
  115. B: 10
  116. C: 1100
  117. D: 11010
  118. E: 11011
  119. F: 11100
  120. G: 11101
  121. H: 11110
  122. I: 111110
  123. J: 111111
  124. Let's make the first table three bits long (eight entries):
  125. 000: A,1
  126. 001: A,1
  127. 010: A,1
  128. 011: A,1
  129. 100: B,2
  130. 101: B,2
  131. 110: -> table X (gobble 3 bits)
  132. 111: -> table Y (gobble 3 bits)
  133. Each entry is what the bits decode to and how many bits that is, i.e. how  
  134. many bits to gobble.  Or the entry points to another table, with the number of
  135. bits to gobble implicit in the size of the table.
  136. Table X is two bits long since the longest code starting with 110 is five bits
  137. long:
  138. 00: C,1
  139. 01: C,1
  140. 10: D,2
  141. 11: E,2
  142. Table Y is three bits long since the longest code starting with 111 is six  
  143. bits long:
  144. 000: F,2
  145. 001: F,2
  146. 010: G,2
  147. 011: G,2
  148. 100: H,2
  149. 101: H,2
  150. 110: I,3
  151. 111: J,3
  152. So what we have here are three tables with a total of 20 entries that had to  
  153. be constructed.  That's compared to 64 entries for a single table.  Or  
  154. compared to 16 entries for a Huffman tree (six two entry tables and one four  
  155. entry table).  Assuming that the code ideally represents the probability of  
  156. the symbols, it takes on the average 1.25 lookups per symbol.  That's compared
  157. to one lookup for the single table, or 1.66 lookups per symbol for the  
  158. Huffman tree.
  159. There, I think that gives you a picture of what's going on.  For inflate, the  
  160. meaning of a particular symbol is often more than just a letter.  It can be a  
  161. byte (a "literal"), or it can be either a length or a distance which  
  162. indicates a base value and a number of bits to fetch after the code that is  
  163. added to the base value.  Or it might be the special end-of-block code.  The  
  164. data structures created in inftrees.c try to encode all that information  
  165. compactly in the tables.
  166. Jean-loup Gailly        Mark Adler
  167. jloup@gzip.org          madler@alumni.caltech.edu
  168. References:
  169. [LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
  170. Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
  171. pp. 337-343.
  172. ``DEFLATE Compressed Data Format Specification'' available in
  173. ftp://ds.internic.net/rfc/rfc1951.txt