dqchan.c
上传用户:dangjiwu
上传日期:2013-07-19
资源大小:42019k
文件大小:12k
- /* ***** BEGIN LICENSE BLOCK *****
- * Version: RCSL 1.0/RPSL 1.0
- *
- * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file, are
- * subject to the current version of the RealNetworks Public Source License
- * Version 1.0 (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the RealNetworks Community Source License Version 1.0
- * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
- * in which case the RCSL will apply. You may also obtain the license terms
- * directly from RealNetworks. You may not use this file except in
- * compliance with the RPSL or, if you have a valid RCSL with RealNetworks
- * applicable to this file, the RCSL. Please see the applicable RPSL or
- * RCSL for the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the portions
- * it created.
- *
- * This file, and the files included with this file, is distributed and made
- * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
- * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point MP3 decoder
- * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
- * August 2003
- *
- * dqchan.c - dequantization of transform coefficients
- **************************************************************************************/
- #include "coder.h"
- #include "assembly.h"
- typedef int ARRAY3[3]; /* for short-block reordering */
- /* optional pre-emphasis for high-frequency scale factor bands */
- static const char preTab[22] = { 0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0 };
- /* pow(2,-i/4) for i=0..3, Q31 format */
- static const int pow14[4] = {
- 0x7fffffff, 0x6ba27e65, 0x5a82799a, 0x4c1bf829
- };
- /* pow(2,-i/4) * pow(j,4/3) for i=0..3 j=0..15, Q25 format */
- static const int pow43_14[4][16] = {
- { 0x00000000, 0x10000000, 0x285145f3, 0x453a5cdb, /* Q28 */
- 0x0cb2ff53, 0x111989d6, 0x15ce31c8, 0x1ac7f203,
- 0x20000000, 0x257106b9, 0x2b16b4a3, 0x30ed74b4,
- 0x36f23fa5, 0x3d227bd3, 0x437be656, 0x49fc823c, },
- { 0x00000000, 0x0d744fcd, 0x21e71f26, 0x3a36abd9,
- 0x0aadc084, 0x0e610e6e, 0x12560c1d, 0x168523cf,
- 0x1ae89f99, 0x1f7c03a4, 0x243bae49, 0x29249c67,
- 0x2e34420f, 0x33686f85, 0x38bf3dff, 0x3e370182, },
- { 0x00000000, 0x0b504f33, 0x1c823e07, 0x30f39a55,
- 0x08facd62, 0x0c176319, 0x0f6b3522, 0x12efe2ad,
- 0x16a09e66, 0x1a79a317, 0x1e77e301, 0x2298d5b4,
- 0x26da56fc, 0x2b3a902a, 0x2fb7e7e7, 0x3450f650, },
- { 0x00000000, 0x09837f05, 0x17f910d7, 0x2929c7a9,
- 0x078d0dfa, 0x0a2ae661, 0x0cf73154, 0x0fec91cb,
- 0x1306fe0a, 0x16434a6c, 0x199ee595, 0x1d17ae3d,
- 0x20abd76a, 0x2459d551, 0x28204fbb, 0x2bfe1808, },
- };
- /* pow(j,4/3) for j=16..63, Q23 format */
- static const int pow43[] = {
- 0x1428a2fa, 0x15db1bd6, 0x1796302c, 0x19598d85,
- 0x1b24e8bb, 0x1cf7fcfa, 0x1ed28af2, 0x20b4582a,
- 0x229d2e6e, 0x248cdb55, 0x26832fda, 0x28800000,
- 0x2a832287, 0x2c8c70a8, 0x2e9bc5d8, 0x30b0ff99,
- 0x32cbfd4a, 0x34eca001, 0x3712ca62, 0x393e6088,
- 0x3b6f47e0, 0x3da56717, 0x3fe0a5fc, 0x4220ed72,
- 0x44662758, 0x46b03e7c, 0x48ff1e87, 0x4b52b3f3,
- 0x4daaebfd, 0x5007b497, 0x5268fc62, 0x54ceb29c,
- 0x5738c721, 0x59a72a59, 0x5c19cd35, 0x5e90a129,
- 0x610b9821, 0x638aa47f, 0x660db90f, 0x6894c90b,
- 0x6b1fc80c, 0x6daeaa0d, 0x70416360, 0x72d7e8b0,
- 0x75722ef9, 0x78102b85, 0x7ab1d3ec, 0x7d571e09,
- };
- /* sqrt(0.5) in Q31 format */
- #define SQRTHALF 0x5a82799a
- /*
- * Minimax polynomial approximation to pow(x, 4/3), over the range
- * poly43lo: x = [0.5, 0.7071]
- * poly43hi: x = [0.7071, 1.0]
- *
- * Relative error < 1E-7
- * Coefs are scaled by 4, 2, 1, 0.5, 0.25
- */
- static const int poly43lo[5] = { 0x29a0bda9, 0xb02e4828, 0x5957aa1b, 0x236c498d, 0xff581859 };
- static const int poly43hi[5] = { 0x10852163, 0xd333f6a4, 0x46e9408b, 0x27c2cef0, 0xfef577b4 };
- /* pow(2, i*4/3) as exp and frac */
- static const int pow2exp[8] = { 14, 13, 11, 10, 9, 7, 6, 5 };
- static const int pow2frac[8] = {
- 0x6597fa94, 0x50a28be6, 0x7fffffff, 0x6597fa94,
- 0x50a28be6, 0x7fffffff, 0x6597fa94, 0x50a28be6
- };
- /**************************************************************************************
- * Function: DequantBlock
- *
- * Description: Ken's highly-optimized, low memory dequantizer performing the operation
- * y = pow(x, 4.0/3.0) * pow(2, 25 - scale/4.0)
- *
- * Inputs: input buffer of decode Huffman codewords (signed-magnitude)
- * output buffer of same length (in-place (outbuf = inbuf) is allowed)
- * number of samples
- *
- * Outputs: dequantized samples in Q25 format
- *
- * Return: bitwise-OR of the unsigned outputs (for guard bit calculations)
- **************************************************************************************/
- static int DequantBlock(int *inbuf, int *outbuf, int num, int scale)
- {
- int tab4[4];
- int scalef, scalei, shift;
- int sx, x, y;
- int mask = 0;
- const int *tab16, *coef;
- tab16 = pow43_14[scale & 0x3];
- scalef = pow14[scale & 0x3];
- scalei = MIN(scale >> 2, 31); /* smallest input scale = -47, so smallest scalei = -12 */
- /* cache first 4 values */
- shift = MIN(scalei + 3, 31);
- shift = MAX(shift, 0);
- tab4[0] = 0;
- tab4[1] = tab16[1] >> shift;
- tab4[2] = tab16[2] >> shift;
- tab4[3] = tab16[3] >> shift;
- do {
- sx = *inbuf++;
- x = sx & 0x7fffffff; /* sx = sign|mag */
- if (x < 4) {
- y = tab4[x];
- } else if (x < 16) {
- y = tab16[x];
- y = (scalei < 0) ? y << -scalei : y >> scalei;
- } else {
- if (x < 64) {
- y = pow43[x-16];
- /* fractional scale */
- y = MULSHIFT32(y, scalef);
- shift = scalei - 3;
- } else {
- /* normalize to [0x40000000, 0x7fffffff] */
- x <<= 17;
- shift = 0;
- if (x < 0x08000000)
- x <<= 4, shift += 4;
- if (x < 0x20000000)
- x <<= 2, shift += 2;
- if (x < 0x40000000)
- x <<= 1, shift += 1;
- coef = (x < SQRTHALF) ? poly43lo : poly43hi;
- /* polynomial */
- y = coef[0];
- y = MULSHIFT32(y, x) + coef[1];
- y = MULSHIFT32(y, x) + coef[2];
- y = MULSHIFT32(y, x) + coef[3];
- y = MULSHIFT32(y, x) + coef[4];
- y = MULSHIFT32(y, pow2frac[shift]) << 3;
- /* fractional scale */
- y = MULSHIFT32(y, scalef);
- shift = scalei - pow2exp[shift];
- }
- /* integer scale */
- if (shift < 0) {
- shift = -shift;
- if (y > (0x7fffffff >> shift))
- y = 0x7fffffff; /* clip */
- else
- y <<= shift;
- } else {
- y >>= shift;
- }
- }
- /* sign and store */
- mask |= y;
- *outbuf++ = (sx < 0) ? -y : y;
- } while (--num);
- return mask;
- }
- /**************************************************************************************
- * Function: DequantChannel
- *
- * Description: dequantize one granule, one channel worth of decoded Huffman codewords
- *
- * Inputs: sample buffer (decoded Huffman codewords), length = MAX_NSAMP samples
- * work buffer for reordering short-block, length = MAX_REORDER_SAMPS
- * samples (3 * width of largest short-block critical band)
- * non-zero bound for this channel/granule
- * valid FrameHeader, SideInfoSub, ScaleFactorInfoSub, and CriticalBandInfo
- * structures for this channel/granule
- *
- * Outputs: MAX_NSAMP dequantized samples in sampleBuf
- * updated non-zero bound (indicating which samples are != 0 after DQ)
- * filled-in cbi structure indicating start and end critical bands
- *
- * Return: minimum number of guard bits in dequantized sampleBuf
- *
- * Notes: dequantized samples in Q(DQ_FRACBITS_OUT) format
- **************************************************************************************/
- int DequantChannel(int *sampleBuf, int *workBuf, int *nonZeroBound, FrameHeader *fh, SideInfoSub *sis,
- ScaleFactorInfoSub *sfis, CriticalBandInfo *cbi)
- {
- int i, j, w, cb;
- int cbStartL, cbEndL, cbStartS, cbEndS;
- int nSamps, nonZero, sfactMultiplier, gbMask;
- int globalGain, gainI;
- int cbMax[3];
- ARRAY3 *buf; /* short block reorder */
-
- /* set default start/end points for short/long blocks - will update with non-zero cb info */
- if (sis->blockType == 2) {
- cbStartL = 0;
- if (sis->mixedBlock) {
- cbEndL = (fh->ver == MPEG1 ? 8 : 6);
- cbStartS = 3;
- } else {
- cbEndL = 0;
- cbStartS = 0;
- }
- cbEndS = 13;
- } else {
- /* long block */
- cbStartL = 0;
- cbEndL = 22;
- cbStartS = 13;
- cbEndS = 13;
- }
- cbMax[2] = cbMax[1] = cbMax[0] = 0;
- gbMask = 0;
- i = 0;
- /* sfactScale = 0 --> quantizer step size = 2
- * sfactScale = 1 --> quantizer step size = sqrt(2)
- * so sfactMultiplier = 2 or 4 (jump through globalGain by powers of 2 or sqrt(2))
- */
- sfactMultiplier = 2 * (sis->sfactScale + 1);
- /* offset globalGain by -2 if midSide enabled, for 1/sqrt(2) used in MidSideProc()
- * (DequantBlock() does 0.25 * gainI so knocking it down by two is the same as
- * dividing every sample by sqrt(2) = multiplying by 2^-.5)
- */
- globalGain = sis->globalGain;
- if (fh->modeExt >> 1)
- globalGain -= 2;
- globalGain += IMDCT_SCALE; /* scale everything by sqrt(2), for fast IMDCT36 */
- /* long blocks */
- for (cb = 0; cb < cbEndL; cb++) {
- nonZero = 0;
- nSamps = fh->sfBand->l[cb + 1] - fh->sfBand->l[cb];
- gainI = 210 - globalGain + sfactMultiplier * (sfis->l[cb] + (sis->preFlag ? (int)preTab[cb] : 0));
- nonZero |= DequantBlock(sampleBuf + i, sampleBuf + i, nSamps, gainI);
- i += nSamps;
- /* update highest non-zero critical band */
- if (nonZero)
- cbMax[0] = cb;
- gbMask |= nonZero;
- if (i >= *nonZeroBound)
- break;
- }
- /* set cbi (Type, EndS[], EndSMax will be overwritten if we proceed to do short blocks) */
- cbi->cbType = 0; /* long only */
- cbi->cbEndL = cbMax[0];
- cbi->cbEndS[0] = cbi->cbEndS[1] = cbi->cbEndS[2] = 0;
- cbi->cbEndSMax = 0;
- /* early exit if no short blocks */
- if (cbStartS >= 12)
- return CLZ(gbMask) - 1;
-
- /* short blocks */
- cbMax[2] = cbMax[1] = cbMax[0] = cbStartS;
- for (cb = cbStartS; cb < cbEndS; cb++) {
- nSamps = fh->sfBand->s[cb + 1] - fh->sfBand->s[cb];
- for (w = 0; w < 3; w++) {
- nonZero = 0;
- gainI = 210 - globalGain + 8*sis->subBlockGain[w] + sfactMultiplier*(sfis->s[cb][w]);
- nonZero |= DequantBlock(sampleBuf + i + nSamps*w, workBuf + nSamps*w, nSamps, gainI);
- /* update highest non-zero critical band */
- if (nonZero)
- cbMax[w] = cb;
- gbMask |= nonZero;
- }
- /* reorder blocks */
- buf = (ARRAY3 *)(sampleBuf + i);
- i += 3*nSamps;
- for (j = 0; j < nSamps; j++) {
- buf[j][0] = workBuf[0*nSamps + j];
- buf[j][1] = workBuf[1*nSamps + j];
- buf[j][2] = workBuf[2*nSamps + j];
- }
- ASSERT(3*nSamps <= MAX_REORDER_SAMPS);
- if (i >= *nonZeroBound)
- break;
- }
- /* i = last non-zero INPUT sample processed, which corresponds to highest possible non-zero
- * OUTPUT sample (after reorder)
- * however, the original nzb is no longer necessarily true
- * for each cb, buf[][] is updated with 3*nSamps samples (i increases 3*nSamps each time)
- * (buf[j + 1][0] = 3 (input) samples ahead of buf[j][0])
- * so update nonZeroBound to i
- */
- *nonZeroBound = i;
- ASSERT(*nonZeroBound <= MAX_NSAMP);
- cbi->cbType = (sis->mixedBlock ? 2 : 1); /* 2 = mixed short/long, 1 = short only */
- cbi->cbEndS[0] = cbMax[0];
- cbi->cbEndS[1] = cbMax[1];
- cbi->cbEndS[2] = cbMax[2];
- cbi->cbEndSMax = cbMax[0];
- cbi->cbEndSMax = MAX(cbi->cbEndSMax, cbMax[1]);
- cbi->cbEndSMax = MAX(cbi->cbEndSMax, cbMax[2]);
- return CLZ(gbMask) - 1;
- }