huffman.c
上传用户:dangjiwu
上传日期:2013-07-19
资源大小:42019k
文件大小:17k
- /* ***** BEGIN LICENSE BLOCK *****
- * Version: RCSL 1.0/RPSL 1.0
- *
- * Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
- *
- * The contents of this file, and the files included with this file, are
- * subject to the current version of the RealNetworks Public Source License
- * Version 1.0 (the "RPSL") available at
- * http://www.helixcommunity.org/content/rpsl unless you have licensed
- * the file under the RealNetworks Community Source License Version 1.0
- * (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
- * in which case the RCSL will apply. You may also obtain the license terms
- * directly from RealNetworks. You may not use this file except in
- * compliance with the RPSL or, if you have a valid RCSL with RealNetworks
- * applicable to this file, the RCSL. Please see the applicable RPSL or
- * RCSL for the rights, obligations and limitations governing use of the
- * contents of the file.
- *
- * This file is part of the Helix DNA Technology. RealNetworks is the
- * developer of the Original Code and owns the copyrights in the portions
- * it created.
- *
- * This file, and the files included with this file, is distributed and made
- * available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
- * EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
- * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
- * FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
- *
- * Technology Compatibility Kit Test Suite(s) Location:
- * http://www.helixcommunity.org/content/tck
- *
- * Contributor(s):
- *
- * ***** END LICENSE BLOCK ***** */
- /**************************************************************************************
- * Fixed-point MP3 decoder
- * Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
- * July 2003
- *
- * huffman.c - Huffman decoding of transform coefficients
- **************************************************************************************/
- #include "coder.h"
- /* helper macros - see comments in hufftabs.c about the format of the huffman tables */
- #define GetMaxbits(x) ((int)( (((unsigned short)(x)) >> 0) & 0x000f))
- #define GetHLen(x) ((int)( (((unsigned short)(x)) >> 12) & 0x000f))
- #define GetCWY(x) ((int)( (((unsigned short)(x)) >> 8) & 0x000f))
- #define GetCWX(x) ((int)( (((unsigned short)(x)) >> 4) & 0x000f))
- #define GetSignBits(x) ((int)( (((unsigned short)(x)) >> 0) & 0x000f))
- #define GetHLenQ(x) ((int)( (((unsigned char)(x)) >> 4) & 0x0f))
- #define GetCWVQ(x) ((int)( (((unsigned char)(x)) >> 3) & 0x01))
- #define GetCWWQ(x) ((int)( (((unsigned char)(x)) >> 2) & 0x01))
- #define GetCWXQ(x) ((int)( (((unsigned char)(x)) >> 1) & 0x01))
- #define GetCWYQ(x) ((int)( (((unsigned char)(x)) >> 0) & 0x01))
- /* apply sign of s to the positive number x (save in MSB, will do two's complement in dequant) */
- #define ApplySign(x, s) { (x) |= ((s) & 0x80000000); }
- /**************************************************************************************
- * Function: DecodeHuffmanPairs
- *
- * Description: decode 2-way vector Huffman codes in the "bigValues" region of spectrum
- *
- * Inputs: valid BitStreamInfo struct, pointing to start of pair-wise codes
- * pointer to xy buffer to received decoded values
- * number of codewords to decode
- * index of Huffman table to use
- * number of bits remaining in bitstream
- *
- * Outputs: pairs of decoded coefficients in vwxy
- * updated BitStreamInfo struct
- *
- * Return: number of bits used, or -1 if out of bits
- *
- * Notes: assumes that nVals is an even number
- * si_huff.bit tests every Huffman codeword in every table (though not
- * necessarily all linBits outputs for x,y > 15)
- **************************************************************************************/
- static int DecodeHuffmanPairs(int *xy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset)
- {
- int i, x, y;
- int cachedBits, padBits, len, startBits, linBits, maxBits, minBits;
- HuffTabType tabType;
- unsigned short cw, *tBase, *tCurr;
- unsigned int cache;
- if(nVals <= 0)
- return 0;
- if (bitsLeft < 0)
- return -1;
- startBits = bitsLeft;
- tBase = (unsigned short *)(huffTable + huffTabOffset[tabIdx]);
- linBits = huffTabLookup[tabIdx].linBits;
- tabType = huffTabLookup[tabIdx].tabType;
- ASSERT(!(nVals & 0x01));
- ASSERT(tabIdx < HUFF_PAIRTABS);
- ASSERT(tabIdx >= 0);
- ASSERT(tabType != invalidTab);
- /* initially fill cache with any partial byte */
- cache = 0;
- cachedBits = (8 - bitOffset) & 0x07;
- if (cachedBits)
- cache = (unsigned int)(*buf++) << (32 - cachedBits);
- bitsLeft -= cachedBits;
- if (tabType == noBits) {
- /* table 0, no data, x = y = 0 */
- for (i = 0; i < nVals; i+=2) {
- xy[i+0] = 0;
- xy[i+1] = 0;
- }
- return 0;
- } else if (tabType == oneShot) {
- /* single lookup, no escapes */
- maxBits = GetMaxbits(tBase[0]);
- tBase++;
- padBits = 0;
- while (nVals > 0) {
- /* refill cache - assumes cachedBits <= 16 */
- if (bitsLeft >= 16) {
- /* load 2 new bytes into left-justified cache */
- cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- cache |= (unsigned int)(*buf++) << (16 - cachedBits);
- cachedBits += 16;
- bitsLeft -= 16;
- } else {
- /* last time through, pad cache with zeros and drain cache */
- if (cachedBits + bitsLeft <= 0) return -1;
- if (bitsLeft > 0) cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- if (bitsLeft > 8) cache |= (unsigned int)(*buf++) << (16 - cachedBits);
- cachedBits += bitsLeft;
- bitsLeft = 0;
- cache &= (signed int)0x80000000 >> (cachedBits - 1);
- padBits = 11;
- cachedBits += padBits; /* okay if this is > 32 (0's automatically shifted in from right) */
- }
- /* largest maxBits = 9, plus 2 for sign bits, so make sure cache has at least 11 bits */
- while (nVals > 0 && cachedBits >= 11 ) {
- cw = tBase[cache >> (32 - maxBits)];
- len = GetHLen(cw);
- cachedBits -= len;
- cache <<= len;
- x = GetCWX(cw); if (x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}
- y = GetCWY(cw); if (y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}
- /* ran out of bits - should never have consumed padBits */
- if (cachedBits < padBits)
- return -1;
- *xy++ = x;
- *xy++ = y;
- nVals -= 2;
- }
- }
- bitsLeft += (cachedBits - padBits);
- return (startBits - bitsLeft);
- } else if (tabType == loopLinbits || tabType == loopNoLinbits) {
- tCurr = tBase;
- padBits = 0;
- while (nVals > 0) {
- /* refill cache - assumes cachedBits <= 16 */
- if (bitsLeft >= 16) {
- /* load 2 new bytes into left-justified cache */
- cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- cache |= (unsigned int)(*buf++) << (16 - cachedBits);
- cachedBits += 16;
- bitsLeft -= 16;
- } else {
- /* last time through, pad cache with zeros and drain cache */
- if (cachedBits + bitsLeft <= 0) return -1;
- if (bitsLeft > 0) cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- if (bitsLeft > 8) cache |= (unsigned int)(*buf++) << (16 - cachedBits);
- cachedBits += bitsLeft;
- bitsLeft = 0;
- cache &= (signed int)0x80000000 >> (cachedBits - 1);
- padBits = 11;
- cachedBits += padBits; /* okay if this is > 32 (0's automatically shifted in from right) */
- }
- /* largest maxBits = 9, plus 2 for sign bits, so make sure cache has at least 11 bits */
- while (nVals > 0 && cachedBits >= 11 ) {
- maxBits = GetMaxbits(tCurr[0]);
- cw = tCurr[(cache >> (32 - maxBits)) + 1];
- len = GetHLen(cw);
- if (!len) {
- cachedBits -= maxBits;
- cache <<= maxBits;
- tCurr += cw;
- continue;
- }
- cachedBits -= len;
- cache <<= len;
-
- x = GetCWX(cw);
- y = GetCWY(cw);
- if (x == 15 && tabType == loopLinbits) {
- minBits = linBits + 1 + (y ? 1 : 0);
- if (cachedBits + bitsLeft < minBits)
- return -1;
- while (cachedBits < minBits) {
- cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- cachedBits += 8;
- bitsLeft -= 8;
- }
- if (bitsLeft < 0) {
- cachedBits += bitsLeft;
- bitsLeft = 0;
- cache &= (signed int)0x80000000 >> (cachedBits - 1);
- }
- x += (int)(cache >> (32 - linBits));
- cachedBits -= linBits;
- cache <<= linBits;
- }
- if (x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}
- if (y == 15 && tabType == loopLinbits) {
- minBits = linBits + 1;
- if (cachedBits + bitsLeft < minBits)
- return -1;
- while (cachedBits < minBits) {
- cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- cachedBits += 8;
- bitsLeft -= 8;
- }
- if (bitsLeft < 0) {
- cachedBits += bitsLeft;
- bitsLeft = 0;
- cache &= (signed int)0x80000000 >> (cachedBits - 1);
- }
- y += (int)(cache >> (32 - linBits));
- cachedBits -= linBits;
- cache <<= linBits;
- }
- if (y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}
- /* ran out of bits - should never have consumed padBits */
- if (cachedBits < padBits)
- return -1;
- *xy++ = x;
- *xy++ = y;
- nVals -= 2;
- tCurr = tBase;
- }
- }
- bitsLeft += (cachedBits - padBits);
- return (startBits - bitsLeft);
- }
- /* error in bitstream - trying to access unused Huffman table */
- return -1;
- }
- /**************************************************************************************
- * Function: DecodeHuffmanQuads
- *
- * Description: decode 4-way vector Huffman codes in the "count1" region of spectrum
- *
- * Inputs: valid BitStreamInfo struct, pointing to start of quadword codes
- * pointer to vwxy buffer to received decoded values
- * maximum number of codewords to decode
- * index of quadword table (0 = table A, 1 = table B)
- * number of bits remaining in bitstream
- *
- * Outputs: quadruples of decoded coefficients in vwxy
- * updated BitStreamInfo struct
- *
- * Return: index of the first "zero_part" value (index of the first sample
- * of the quad word after which all samples are 0)
- *
- * Notes: si_huff.bit tests every vwxy output in both quad tables
- **************************************************************************************/
- static int DecodeHuffmanQuads(int *vwxy, int nVals, int tabIdx, int bitsLeft, unsigned char *buf, int bitOffset)
- {
- int i, v, w, x, y;
- int len, maxBits, cachedBits, padBits;
- unsigned int cache;
- unsigned char cw, *tBase;
- if (bitsLeft <= 0)
- return 0;
- tBase = (unsigned char *)quadTable + quadTabOffset[tabIdx];
- maxBits = quadTabMaxBits[tabIdx];
- /* initially fill cache with any partial byte */
- cache = 0;
- cachedBits = (8 - bitOffset) & 0x07;
- if (cachedBits)
- cache = (unsigned int)(*buf++) << (32 - cachedBits);
- bitsLeft -= cachedBits;
- i = padBits = 0;
- while (i < (nVals - 3)) {
- /* refill cache - assumes cachedBits <= 16 */
- if (bitsLeft >= 16) {
- /* load 2 new bytes into left-justified cache */
- cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- cache |= (unsigned int)(*buf++) << (16 - cachedBits);
- cachedBits += 16;
- bitsLeft -= 16;
- } else {
- /* last time through, pad cache with zeros and drain cache */
- if (cachedBits + bitsLeft <= 0) return i;
- if (bitsLeft > 0) cache |= (unsigned int)(*buf++) << (24 - cachedBits);
- if (bitsLeft > 8) cache |= (unsigned int)(*buf++) << (16 - cachedBits);
- cachedBits += bitsLeft;
- bitsLeft = 0;
- cache &= (signed int)0x80000000 >> (cachedBits - 1);
- padBits = 10;
- cachedBits += padBits; /* okay if this is > 32 (0's automatically shifted in from right) */
- }
- /* largest maxBits = 6, plus 4 for sign bits, so make sure cache has at least 10 bits */
- while (i < (nVals - 3) && cachedBits >= 10 ) {
- cw = tBase[cache >> (32 - maxBits)];
- len = GetHLenQ(cw);
- cachedBits -= len;
- cache <<= len;
- v = GetCWVQ(cw); if(v) {ApplySign(v, cache); cache <<= 1; cachedBits--;}
- w = GetCWWQ(cw); if(w) {ApplySign(w, cache); cache <<= 1; cachedBits--;}
- x = GetCWXQ(cw); if(x) {ApplySign(x, cache); cache <<= 1; cachedBits--;}
- y = GetCWYQ(cw); if(y) {ApplySign(y, cache); cache <<= 1; cachedBits--;}
- /* ran out of bits - okay (means we're done) */
- if (cachedBits < padBits)
- return i;
- *vwxy++ = v;
- *vwxy++ = w;
- *vwxy++ = x;
- *vwxy++ = y;
- i += 4;
- }
- }
- /* decoded max number of quad values */
- return i;
- }
- /**************************************************************************************
- * Function: DecodeHuffman
- *
- * Description: decode one granule, one channel worth of Huffman codes
- *
- * Inputs: MP3DecInfo structure filled by UnpackFrameHeader(), UnpackSideInfo(),
- * and UnpackScaleFactors() (for this granule)
- * buffer pointing to start of Huffman data in MP3 frame
- * pointer to bit offset (0-7) indicating starting bit in buf[0]
- * number of bits in the Huffman data section of the frame
- * (could include padding bits)
- * index of current granule and channel
- *
- * Outputs: decoded coefficients in hi->huffDecBuf[ch] (hi pointer in mp3DecInfo)
- * updated bitOffset
- *
- * Return: length (in bytes) of Huffman codes
- * bitOffset also returned in parameter (0 = MSB, 7 = LSB of
- * byte located at buf + offset)
- * -1 if null input pointers, huffBlockBits < 0, or decoder runs
- * out of bits prematurely (invalid bitstream)
- **************************************************************************************/
- int DecodeHuffman(MP3DecInfo *mp3DecInfo, unsigned char *buf, int *bitOffset, int huffBlockBits, int gr, int ch)
- {
- int r1Start, r2Start, rEnd[4]; /* region boundaries */
- int i, w, bitsUsed, bitsLeft;
- unsigned char *startBuf = buf;
- FrameHeader *fh;
- SideInfo *si;
- SideInfoSub *sis;
- ScaleFactorInfo *sfi;
- HuffmanInfo *hi;
- /* validate pointers */
- if (!mp3DecInfo || !mp3DecInfo->FrameHeaderPS || !mp3DecInfo->SideInfoPS || !mp3DecInfo->ScaleFactorInfoPS || !mp3DecInfo->HuffmanInfoPS)
- return -1;
- fh = ((FrameHeader *)(mp3DecInfo->FrameHeaderPS));
- si = ((SideInfo *)(mp3DecInfo->SideInfoPS));
- sis = &si->sis[gr][ch];
- sfi = ((ScaleFactorInfo *)(mp3DecInfo->ScaleFactorInfoPS));
- hi = (HuffmanInfo*)(mp3DecInfo->HuffmanInfoPS);
- if (huffBlockBits < 0)
- return -1;
- /* figure out region boundaries (the first 2*bigVals coefficients divided into 3 regions) */
- if (sis->winSwitchFlag && sis->blockType == 2) {
- if (sis->mixedBlock == 0) {
- r1Start = fh->sfBand->s[(sis->region0Count + 1)/3] * 3;
- } else {
- if (fh->ver == MPEG1) {
- r1Start = fh->sfBand->l[sis->region0Count + 1];
- } else {
- /* see MPEG2 spec for explanation */
- w = fh->sfBand->s[4] - fh->sfBand->s[3];
- r1Start = fh->sfBand->l[6] + 2*w;
- }
- }
- r2Start = MAX_NSAMP; /* short blocks don't have region 2 */
- } else {
- r1Start = fh->sfBand->l[sis->region0Count + 1];
- r2Start = fh->sfBand->l[sis->region0Count + 1 + sis->region1Count + 1];
- }
- /* offset rEnd index by 1 so first region = rEnd[1] - rEnd[0], etc. */
- rEnd[3] = MIN(MAX_NSAMP, 2 * sis->nBigvals);
- rEnd[2] = MIN(r2Start, rEnd[3]);
- rEnd[1] = MIN(r1Start, rEnd[3]);
- rEnd[0] = 0;
- /* rounds up to first all-zero pair (we don't check last pair for (x,y) == (non-zero, zero)) */
- hi->nonZeroBound[ch] = rEnd[3];
- /* decode Huffman pairs (rEnd[i] are always even numbers) */
- bitsLeft = huffBlockBits;
- for (i = 0; i < 3; i++) {
- bitsUsed = DecodeHuffmanPairs(hi->huffDecBuf[ch] + rEnd[i], rEnd[i+1] - rEnd[i], sis->tableSelect[i], bitsLeft, buf, *bitOffset);
- if (bitsUsed < 0 || bitsUsed > bitsLeft) /* error - overran end of bitstream */
- return -1;
- /* update bitstream position */
- buf += (bitsUsed + *bitOffset) >> 3;
- *bitOffset = (bitsUsed + *bitOffset) & 0x07;
- bitsLeft -= bitsUsed;
- }
- /* decode Huffman quads (if any) */
- hi->nonZeroBound[ch] += DecodeHuffmanQuads(hi->huffDecBuf[ch] + rEnd[3], MAX_NSAMP - rEnd[3], sis->count1TableSelect, bitsLeft, buf, *bitOffset);
- ASSERT(hi->nonZeroBound[ch] <= MAX_NSAMP);
- for (i = hi->nonZeroBound[ch]; i < MAX_NSAMP; i++)
- hi->huffDecBuf[ch][i] = 0;
-
- /* If bits used for 576 samples < huffBlockBits, then the extras are considered
- * to be stuffing bits (throw away, but need to return correct bitstream position)
- */
- buf += (bitsLeft + *bitOffset) >> 3;
- *bitOffset = (bitsLeft + *bitOffset) & 0x07;
-
- return (buf - startBuf);
- }