enc_util.c
上传用户:dangjiwu
上传日期:2013-07-19
资源大小:42019k
文件大小:30k
- /*
- *===================================================================
- * 3GPP AMR Wideband Floating-point Speech Codec
- *===================================================================
- */
- #include <math.h>
- #include "hlxclib/memory.h"
- #include "typedef.h"
- #include "enc_main.h"
- #include "enc_lpc.h"
- #ifdef WIN32
- #pragma warning( disable : 4310)
- #endif
- #define MAX_16 (Word16)0x7FFF
- #define MIN_16 (Word16)0x8000
- #define MAX_31 (Word32)0x3FFFFFFF
- #define MIN_31 (Word32)0xC0000000
- #define L_FRAME16k 320 /* Frame size at 16kHz */
- #define L_SUBFR16k 80 /* Subframe size at 16kHz */
- #define L_SUBFR 64 /* Subframe size */
- #define M16k 20 /* Order of LP filter */
- #define L_WINDOW 384 /* window size in LP analysis */
- #define PREEMPH_FAC 0.68F /* preemphasis factor */
- extern const Word16 E_ROM_pow2[];
- extern const Word16 E_ROM_log2[];
- extern const Word16 E_ROM_isqrt[];
- extern const Float32 E_ROM_fir_6k_7k[];
- extern const Float32 E_ROM_hp_gain[];
- extern const Float32 E_ROM_fir_ipol[];
- extern const Float32 E_ROM_hamming_cos[];
- /*
- * E_UTIL_random
- *
- * Parameters:
- * seed I/O: seed for random number
- *
- * Function:
- * Signed 16 bits random generator.
- *
- * Returns:
- * random number
- */
- Word16 E_UTIL_random(Word16 *seed)
- {
- /*static Word16 seed = 21845;*/
- *seed = (Word16) (*seed * 31821L + 13849L);
- return(*seed);
- }
- /*
- * E_UTIL_saturate
- *
- * Parameters:
- * inp I: 32-bit number
- *
- * Function:
- * Saturation to 16-bit number
- *
- * Returns:
- * 16-bit number
- */
- Word16 E_UTIL_saturate(Word32 inp)
- {
- Word16 out;
- if ((inp < MAX_16) & (inp > MIN_16))
- {
- out = (Word16)inp;
- }
- else
- {
- if (inp > 0)
- {
- out = MAX_16;
- }
- else
- {
- out = MIN_16;
- }
- }
- return(out);
- }
- /*
- * E_UTIL_saturate_31
- *
- * Parameters:
- * inp I: 32-bit number
- *
- * Function:
- * Saturation to 31-bit number
- *
- * Returns:
- * 31(32)-bit number
- */
- Word32 E_UTIL_saturate_31(Word32 inp)
- {
- Word32 out;
- if ((inp < MAX_31) & (inp > MIN_31))
- {
- out = inp;
- }
- else
- {
- if (inp > 0)
- {
- out = MAX_31;
- }
- else
- {
- out = MIN_31;
- }
- }
- return(out);
- }
- /*
- * E_UTIL_norm_s
- *
- * Parameters:
- * L_var1 I: 32 bit Word32 signed integer (Word32) whose value
- * falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
- *
- * Function:
- * Produces the number of left shift needed to normalize the 16 bit
- * variable var1 for positive values on the interval with minimum
- * of 16384 and maximum of 32767, and for negative values on
- * the interval with minimum of -32768 and maximum of -16384.
- *
- * Returns:
- * 16 bit Word16 signed integer (Word16) whose value falls in the range
- * 0x0000 0000 <= var_out <= 0x0000 000f.
- */
- Word16 E_UTIL_norm_s (Word16 var1)
- {
- Word16 var_out;
- if (var1 == 0)
- {
- var_out = 0;
- }
- else
- {
- if (var1 == -1)
- {
- var_out = 15;
- }
- else
- {
- if (var1 < 0)
- {
- var1 = (Word16)~var1;
- }
- for (var_out = 0; var1 < 0x4000; var_out++)
- {
- var1 <<= 1;
- }
- }
- }
- return (var_out);
- }
- /*
- * E_UTIL_norm_l
- *
- * Parameters:
- * L_var1 I: 32 bit Word32 signed integer (Word32) whose value
- * falls in the range 0x8000 0000 <= var1 <= 0x7fff ffff.
- *
- * Function:
- * Produces the number of left shifts needed to normalize the 32 bit
- * variable L_var1 for positive values on the interval with minimum of
- * 1073741824 and maximum of 2147483647, and for negative values on
- * the interval with minimum of -2147483648 and maximum of -1073741824;
- * in order to normalize the result, the following operation must be done:
- * norm_L_var1 = L_shl(L_var1,norm_l(L_var1)).
- *
- * Returns:
- * 16 bit Word16 signed integer (Word16) whose value falls in the range
- * 0x0000 0000 <= var_out <= 0x0000 001f.
- */
- Word16 E_UTIL_norm_l (Word32 L_var1)
- {
- Word16 var_out;
- if (L_var1 == 0)
- {
- var_out = 0;
- }
- else
- {
- if (L_var1 == (Word32) 0xffffffffL)
- {
- var_out = 31;
- }
- else
- {
- if (L_var1 < 0)
- {
- L_var1 = ~L_var1;
- }
- for (var_out = 0; L_var1 < (Word32) 0x40000000L; var_out++)
- {
- L_var1 <<= 1;
- }
- }
- }
- return (var_out);
- }
- /*
- * E_UTIL_l_extract
- *
- * Parameters:
- * L_32 I: 32 bit integer.
- * hi O: b16 to b31 of L_32
- * lo O: (L_32 - hi<<16)>>1
- *
- * Function:
- * Extract from a 32 bit integer two 16 bit DPF.
- *
- * Returns:
- * void
- */
- void E_UTIL_l_extract(Word32 L_32, Word16 *hi, Word16 *lo)
- {
- *hi = (Word16)(L_32 >> 16);
- *lo = (Word16)((L_32 >> 1) - ((*hi * 16384) << 1));
- return;
- }
- /*
- * E_UTIL_mpy_32_16
- *
- * Parameters:
- * hi I: hi part of 32 bit number
- * lo I: lo part of 32 bit number
- * n I: 16 bit number
- *
- * Function:
- * Multiply a 16 bit integer by a 32 bit (DPF). The result is divided
- * by 2^15.
- *
- * L_32 = (hi1*lo2)<<1 + ((lo1*lo2)>>15)<<1
- *
- * Returns:
- * 32 bit result
- */
- Word32 E_UTIL_mpy_32_16 (Word16 hi, Word16 lo, Word16 n)
- {
- Word32 L_32;
- L_32 = (hi * n) << 1;
- L_32 = L_32 + (((lo * n) >> 15) << 1);
- return (L_32);
- }
- /*
- * E_UTIL_pow2
- *
- * Parameters:
- * exponant I: (Q0) Integer part. (range: 0 <= val <= 30)
- * fraction I: (Q15) Fractionnal part. (range: 0.0 <= val < 1.0)
- *
- * Function:
- * L_x = pow(2.0, exponant.fraction) (exponant = interger part)
- * = pow(2.0, 0.fraction) << exponant
- *
- * Algorithm:
- *
- * The function Pow2(L_x) is approximated by a table and linear
- * interpolation.
- *
- * 1 - i = bit10 - b15 of fraction, 0 <= i <= 31
- * 2 - a = bit0 - b9 of fraction
- * 3 - L_x = table[i] << 16 - (table[i] - table[i + 1]) * a * 2
- * 4 - L_x = L_x >> (30-exponant) (with rounding)
- *
- * Returns:
- * range 0 <= val <= 0x7fffffff
- */
- Word32 E_UTIL_pow2(Word16 exponant, Word16 fraction)
- {
- Word32 L_x, tmp, i, exp;
- Word16 a;
- L_x = fraction * 32; /* L_x = fraction<<6 */
- i = L_x >> 15; /* Extract b10-b16 of fraction */
- a = (Word16)(L_x); /* Extract b0-b9 of fraction */
- a = (Word16)(a & (Word16)0x7fff);
- L_x = E_ROM_pow2[i] << 16; /* table[i] << 16 */
- tmp = E_ROM_pow2[i] - E_ROM_pow2[i + 1]; /* table[i] - table[i+1] */
- L_x = L_x - ((tmp * a) << 1); /* L_x -= tmp*a*2 */
- exp = 30 - exponant;
- L_x = (L_x + (1 << (exp - 1))) >> exp;
- return(L_x);
- }
- /*
- * E_UTIL_normalised_log2
- *
- * Parameters:
- * L_x I: input value (normalized)
- * exp I: norm_l (L_x)
- * exponent O: Integer part of Log2. (range: 0<=val<=30)
- * fraction O: Fractional part of Log2. (range: 0<=val<1)
- *
- * Function:
- * Computes log2(L_x, exp), where L_x is positive and
- * normalized, and exp is the normalisation exponent
- * If L_x is negative or zero, the result is 0.
- *
- * The function Log2(L_x) is approximated by a table and linear
- * interpolation. The following steps are used to compute Log2(L_x)
- *
- * 1. exponent = 30 - norm_exponent
- * 2. i = bit25 - b31 of L_x; 32 <= i <= 63 (because of normalization).
- * 3. a = bit10 - b24
- * 4. i -= 32
- * 5. fraction = table[i] << 16 - (table[i] - table[i + 1]) * a * 2
- *
- *
- * Returns:
- * void
- */
- static void E_UTIL_normalised_log2(Word32 L_x, Word16 exp, Word16 *exponent,
- Word16 *fraction)
- {
- Word32 i, a, tmp;
- Word32 L_y;
- if (L_x <= 0)
- {
- *exponent = 0;
- *fraction = 0;
- return;
- }
- *exponent = (Word16)(30 - exp);
- L_x = L_x >> 10;
- i = L_x >> 15; /* Extract b25-b31 */
- a = L_x; /* Extract b10-b24 of fraction */
- a = a & 0x00007fff;
- i = i - 32;
- L_y = E_ROM_log2[i] << 16; /* table[i] << 16 */
- tmp = E_ROM_log2[i] - E_ROM_log2[i + 1]; /* table[i] - table[i+1] */
- L_y = L_y - ((tmp * a) << 1); /* L_y -= tmp*a*2 */
- *fraction = (Word16)(L_y >> 16);
- return;
- }
- /*
- * E_UTIL_log2
- *
- * Parameters:
- * L_x I: input value
- * exponent O: Integer part of Log2. (range: 0<=val<=30)
- * fraction O: Fractional part of Log2. (range: 0<=val<1)
- *
- * Function:
- * Computes log2(L_x), where L_x is positive.
- * If L_x is negative or zero, the result is 0.
- *
- * Returns:
- * void
- */
- void E_UTIL_log2_32 (Word32 L_x, Word16 *exponent, Word16 *fraction)
- {
- Word16 exp;
- exp = E_UTIL_norm_l(L_x);
- E_UTIL_normalised_log2((L_x << exp), exp, exponent, fraction);
- }
- /*
- * E_UTIL_interpol
- *
- * Parameters:
- * x I: input vector
- * fir I: filter coefficient
- * frac I: fraction (0..resol)
- * resol I: resolution
- * nb_coef I: number of coefficients
- *
- * Function:
- * Fractional interpolation of signal at position (frac/up_samp)
- *
- * Returns:
- * result of interpolation
- */
- static Float32 E_UTIL_interpol(Float32 *x, Word32 frac, Word32 up_samp,
- Word32 nb_coef)
- {
- Word32 i;
- Float32 s;
- Float32 *x1, *x2;
- const Float32 *c1, *c2;
- x1 = &x[0];
- x2 = &x[1];
- c1 = &E_ROM_fir_ipol[frac];
- c2 = &E_ROM_fir_ipol[up_samp - frac];
- s = 0.0;
- for(i = 0; i < nb_coef; i++)
- {
- s += x1[-i] * c1[up_samp * i] + x2[i] * c2[up_samp * i];
- }
- return s;
- }
- /*
- * E_UTIL_hp50_12k8
- *
- * Parameters:
- * signal I/O: signal
- * lg I: lenght of signal
- * mem I/O: filter memory [6]
- *
- * Function:
- * 2nd order high pass filter with cut off frequency at 50 Hz.
- *
- * Algorithm:
- *
- * y[i] = b[0]*x[i] + b[1]*x[i-1] + b[2]*x[i-2]
- * + a[1]*y[i-1] + a[2]*y[i-2];
- *
- * b[3] = {0.989501953f, -1.979003906f, 0.989501953f};
- * a[3] = {1.000000000F, 1.978881836f,-0.966308594f};
- *
- *
- * Returns:
- * void
- */
- void E_UTIL_hp50_12k8(Float32 signal[], Word32 lg, Float32 mem[])
- {
- Word32 i;
- Float32 x0, x1, x2, y0, y1, y2;
- y1 = mem[0];
- y2 = mem[1];
- x0 = mem[2];
- x1 = mem[3];
- for(i = 0; i < lg; i++)
- {
- x2 = x1;
- x1 = x0;
- x0 = signal[i];
- y0 = y1 * 1.978881836F + y2 * -0.979125977F + x0 * 0.989501953F +
- x1 * -1.979003906F + x2 * 0.989501953F;
- signal[i] = y0;
- y2 = y1;
- y1 = y0;
- }
- mem[0] = ((y1 > 1e-10) | (y1 < -1e-10)) ? y1 : 0;
- mem[1] = ((y2 > 1e-10) | (y2 < -1e-10)) ? y2 : 0;
- mem[2] = ((x0 > 1e-10) | (x0 < -1e-10)) ? x0 : 0;
- mem[3] = ((x1 > 1e-10) | (x1 < -1e-10)) ? x1 : 0;
- return;
- }
- /*
- * E_UTIL_hp400_12k8
- *
- * Parameters:
- * signal I/O: signal
- * lg I: lenght of signal
- * mem I/O: filter memory [4]
- *
- * Function:
- * 2nd order high pass filter with cut off frequency at 400 Hz.
- *
- * Algorithm:
- *
- * y[i] = b[0]*x[i] + b[1]*x[i-1] + b[2]*x[i-2]
- * + a[1]*y[i-1] + a[2]*y[i-2];
- *
- * b[3] = {0.893554687, -1.787109375, 0.893554687};
- * a[3] = {1.000000000, 1.787109375, -0.864257812};
- *
- *
- * Returns:
- * void
- */
- static void E_UTIL_hp400_12k8(Float32 signal[], Word32 lg, Float32 mem[])
- {
- Word32 i;
- Float32 x0, x1, x2;
- Float32 y0, y1, y2;
- y1 = mem[0];
- y2 = mem[1];
- x0 = mem[2];
- x1 = mem[3];
- for(i = 0; i < lg; i++)
- {
- x2 = x1;
- x1 = x0;
- x0 = signal[i];
- y0 = y1 * 1.787109375F + y2 * -0.864257812F + x0 * 0.893554687F + x1 * -
- 1.787109375F + x2 * 0.893554687F;
- signal[i] = y0;
- y2 = y1;
- y1 = y0;
- }
- mem[0] = y1;
- mem[1] = y2;
- mem[2] = x0;
- mem[3] = x1;
- return;
- }
- /*
- * E_UTIL_bp_6k_7k
- *
- * Parameters:
- * signal I/O: signal
- * lg I: lenght of signal
- * mem I/O: filter memory [4]
- *
- * Function:
- * 15th order band pass 6kHz to 7kHz FIR filter.
- *
- * Returns:
- * void
- */
- static void E_UTIL_bp_6k_7k(Float32 signal[], Word32 lg, Float32 mem[])
- {
- Float32 x[L_SUBFR16k + 30];
- Float32 s0, s1, s2, s3;
- Float32 *px;
- Word32 i, j;
- memcpy(x, mem, 30 * sizeof(Float32));
- memcpy(x + 30, signal, lg * sizeof(Float32));
- px = x;
- for(i = 0; i < lg; i++)
- {
- s0 = 0;
- s1 = px[0] * E_ROM_fir_6k_7k[0];
- s2 = px[1] * E_ROM_fir_6k_7k[1];
- s3 = px[2] * E_ROM_fir_6k_7k[2];
- for(j = 3; j < 31; j += 4)
- {
- s0 += px[j] * E_ROM_fir_6k_7k[j];
- s1 += px[j + 1] * E_ROM_fir_6k_7k[j + 1];
- s2 += px[j + 2] * E_ROM_fir_6k_7k[j + 2];
- s3 += px[j + 3] * E_ROM_fir_6k_7k[j + 3];
- }
- px++;
- signal[i] = (Float32)((s0 + s1 + s2 + s3) * 0.25F); /* gain of coef = 4.0 */
- }
- memcpy(mem, x + lg, 30 * sizeof(Float32));
- return;
- }
- /*
- * E_UTIL_preemph
- *
- * Parameters:
- * x I/O: signal
- * mu I: preemphasis factor
- * lg I: vector size
- * mem I/O: memory (x[-1])
- *
- * Function:
- * Filtering through 1 - mu z^-1
- *
- *
- * Returns:
- * void
- */
- void E_UTIL_preemph(Word16 x[], Word16 mu, Word32 lg, Word16 *mem)
- {
- Word32 i, L_tmp;
- Word16 temp;
- temp = x[lg - 1];
- for (i = lg - 1; i > 0; i--)
- {
- L_tmp = x[i] << 15;
- L_tmp -= x[i - 1] * mu;
- x[i] = (Word16)((L_tmp + 0x4000) >> 15);
- }
- L_tmp = (x[0] << 15);
- L_tmp -= *mem * mu;
- x[0] = (Word16)((L_tmp + 0x4000) >> 15);
- *mem = temp;
- return;
- }
- void E_UTIL_f_preemph(Float32 *signal, Float32 mu, Word32 L, Float32 *mem)
- {
- Word32 i;
- Float32 temp;
- temp = signal[L - 1];
- for (i = L - 1; i > 0; i--)
- {
- signal[i] = signal[i] - mu * signal[i - 1];
- }
- signal[0] -= mu * (*mem);
- *mem = temp;
- return;
- }
- /*
- * E_UTIL_deemph
- *
- * Parameters:
- * signal I/O: signal
- * mu I: deemphasis factor
- * L I: vector size
- * mem I/O: memory (signal[-1])
- *
- * Function:
- * Filtering through 1/(1-mu z^-1)
- * Signal is divided by 2.
- *
- * Returns:
- * void
- */
- void E_UTIL_deemph(Float32 *signal, Float32 mu, Word32 L, Float32 *mem)
- {
- Word32 i;
- signal[0] = signal[0] + mu * (*mem);
- for (i = 1; i < L; i++)
- {
- signal[i] = signal[i] + mu * signal[i - 1];
- }
- *mem = signal[L - 1];
- if ((*mem < 1e-10) & (*mem > -1e-10))
- {
- *mem = 0;
- }
- return;
- }
- /*
- * E_UTIL_synthesis
- *
- * Parameters:
- * a I: LP filter coefficients
- * m I: order of LP filter
- * x I: input signal
- * y O: output signal
- * lg I: size of filtering
- * mem I/O: initial filter states
- * update_m I: update memory flag
- *
- * Function:
- * Perform the synthesis filtering 1/A(z).
- * Memory size is always M.
- *
- * Returns:
- * void
- */
- void E_UTIL_synthesis(Float32 a[], Float32 x[], Float32 y[], Word32 l,
- Float32 mem[], Word32 update_m)
- {
- Float32 buf[L_FRAME16k + M16k]; /* temporary synthesis buffer */
- Float32 s;
- Float32 *yy;
- Word32 i, j;
- /* copy initial filter states into synthesis buffer */
- memcpy(buf, mem, M * sizeof(Float32));
- yy = &buf[M];
- for (i = 0; i < l; i++)
- {
- s = x[i];
- for (j = 1; j <= M; j += 4)
- {
- s -= a[j] * yy[i - j];
- s -= a[j + 1] * yy[i - (j + 1)];
- s -= a[j + 2] * yy[i - (j + 2)];
- s -= a[j + 3] * yy[i - (j + 3)];
- }
- yy[i] = s;
- y[i] = s;
- }
- /* Update memory if required */
- if (update_m)
- {
- memcpy(mem, &yy[l - M], M * sizeof(Float32));
- }
- return;
- }
- /*
- * E_UTIL_down_samp
- *
- * Parameters:
- * res I: signal to down sample
- * res_d O: down sampled signal
- * L_frame_d I: length of output
- *
- * Function:
- * Down sample to 4/5
- *
- * Returns:
- * void
- */
- static void E_UTIL_down_samp(Float32 *res, Float32 *res_d, Word32 L_frame_d)
- {
- Word32 i, j, frac;
- Float32 pos, fac;
- fac = 0.8F;
- pos = 0;
- for(i = 0; i < L_frame_d; i++)
- {
- j = (Word32)pos; /* j = (Word32)( (Float32)i * inc); */
- frac = (Word32)(((pos - (Float32)j) * 4) + 0.5);
- res_d[i] = fac * E_UTIL_interpol(&res[j], frac, 4, 15);
- pos += 1.25F;
- }
- return;
- }
- /*
- * E_UTIL_decim_12k8
- *
- * Parameters:
- * sig16k I: signal to decimate
- * lg I: length of input
- * sig12k8 O: decimated signal
- * mem I/O: memory (2*15)
- *
- * Function:
- * Decimation of 16kHz signal to 12.8kHz.
- *
- * Returns:
- * void
- */
- void E_UTIL_decim_12k8(Float32 sig16k[], Word32 lg, Float32 sig12k8[],
- Float32 mem[])
- {
- Float32 signal[(2 * 15) + L_FRAME16k];
- memcpy(signal, mem, 2 * 15 * sizeof(Float32));
- memcpy(&signal[2 * 15], sig16k, lg * sizeof(Float32));
- E_UTIL_down_samp(signal + 15, sig12k8, lg * 4 / 5);
- memcpy(mem, &signal[lg], 2 * 15 * sizeof(Float32));
- return;
- }
- /*
- * E_UTIL_residu
- *
- * Parameters:
- * a I: LP filter coefficients (Q12)
- * x I: input signal (usually speech)
- * y O: output signal (usually residual)
- * l I: size of filtering
- *
- * Function:
- * Compute the LP residual by filtering the input speech through A(z).
- * Order of LP filter = M.
- *
- * Returns:
- * void
- */
- void E_UTIL_residu(Float32 *a, Float32 *x, Float32 *y, Word32 l)
- {
- Float32 s;
- Word32 i;
- for (i = 0; i < l; i++)
- {
- s = x[i];
- s += a[1] * x[i - 1];
- s += a[2] * x[i - 2];
- s += a[3] * x[i - 3];
- s += a[4] * x[i - 4];
- s += a[5] * x[i - 5];
- s += a[6] * x[i - 6];
- s += a[7] * x[i - 7];
- s += a[8] * x[i - 8];
- s += a[9] * x[i - 9];
- s += a[10] * x[i - 10];
- s += a[11] * x[i - 11];
- s += a[12] * x[i - 12];
- s += a[13] * x[i - 13];
- s += a[14] * x[i - 14];
- s += a[15] * x[i - 15];
- s += a[16] * x[i - 16];
- y[i] = s;
- }
- return;
- }
- /*
- * E_UTIL_convolve
- *
- * Parameters:
- * x I: input vector
- * h I: impulse response (or second input vector) (Q15)
- * y O: output vetor (result of convolution)
- *
- * Function:
- * Perform the convolution between two vectors x[] and h[] and
- * write the result in the vector y[]. All vectors are of length L.
- * Only the first L samples of the convolution are considered.
- * Vector size = L_SUBFR
- *
- * Returns:
- * void
- */
- void E_UTIL_convolve(Word16 x[], Word16 q, Float32 h[], Float32 y[])
- {
- Float32 fx[L_SUBFR];
- Float32 temp, scale;
- Word32 i, n;
- scale = (Float32)pow(2, -q);
- for (i = 0; i < L_SUBFR; i++)
- {
- fx[i] = (Float32)(scale * x[i]);
- }
- for (n = 0; n < L_SUBFR; n += 2)
- {
- temp = 0.0;
- for (i = 0; i <= n; i++)
- {
- temp += (Float32)(fx[i] * h[n - i]);
- }
- y[n] = temp;
- temp = 0.0;
- for (i = 0; i <= (n + 1); i += 2)
- {
- temp += (Float32)(fx[i] * h[(n + 1) - i]);
- temp += (Float32)(fx[i + 1] * h[n - i]);
- }
- y[n + 1] = temp;
- }
- return;
- }
- void E_UTIL_f_convolve(Float32 x[], Float32 h[], Float32 y[])
- {
- Float32 temp;
- Word32 i, n;
- for (n = 0; n < L_SUBFR; n += 2)
- {
- temp = 0.0;
- for (i = 0; i <= n; i++)
- {
- temp += x[i] * h[n - i];
- }
- y[n] = temp;
- temp = 0.0;
- for (i = 0; i <= (n + 1); i += 2)
- {
- temp += x[i] * h[(n + 1) - i];
- temp += x[i + 1] * h[n - i];
- }
- y[n + 1] = temp;
- }
- return;
- }
- /*
- * E_UTIL_signal_up_scale
- *
- * Parameters:
- * x I/O: signal to scale
- * exp I: exponent: x = round(x << exp)
- *
- * Function:
- * Scale signal up to get maximum of dynamic.
- *
- * Returns:
- * void
- */
- void E_UTIL_signal_up_scale(Word16 x[], Word16 exp)
- {
- Word32 i;
- Word32 tmp;
- for (i = 0; i < (PIT_MAX + L_INTERPOL + L_SUBFR); i++)
- {
- tmp = x[i] << exp;
- x[i] = E_UTIL_saturate(tmp);
- }
- return;
- }
- /*
- * E_UTIL_signal_down_scale
- *
- * Parameters:
- * x I/O: signal to scale
- * lg I: size of x[]
- * exp I: exponent: x = round(x << exp)
- *
- * Function:
- * Scale signal up to get maximum of dynamic.
- *
- * Returns:
- * 32 bit result
- */
- void E_UTIL_signal_down_scale(Word16 x[], Word32 lg, Word16 exp)
- {
- Word32 i, tmp;
- for (i = 0; i < lg; i++)
- {
- tmp = x[i] << 16;
- tmp = tmp >> exp;
- x[i] = (Word16)((tmp + 0x8000) >> 16);
- }
- return;
- }
- /*
- * E_UTIL_dot_product12
- *
- * Parameters:
- * x I: 12bit x vector
- * y I: 12bit y vector
- * lg I: vector length (x*4)
- * exp O: exponent of result (0..+30)
- *
- * Function:
- * Compute scalar product of <x[],y[]> using accumulator.
- * The result is normalized (in Q31) with exponent (0..30).
- *
- * Returns:
- * Q31 normalised result (1 < val <= -1)
- */
- Word32 E_UTIL_dot_product12(Word16 x[], Word16 y[], Word32 lg, Word32 *exp)
- {
- Word32 i, sft, L_sum, L_sum1, L_sum2, L_sum3, L_sum4;
- L_sum1 = 0L;
- L_sum2 = 0L;
- L_sum3 = 0L;
- L_sum4 = 0L;
- for (i = 0; i < lg; i += 4)
- {
- L_sum1 += x[i] * y[i];
- L_sum2 += x[i + 1] * y[i + 1];
- L_sum3 += x[i + 2] * y[i + 2];
- L_sum4 += x[i + 3] * y[i + 3];
- }
- L_sum1 = E_UTIL_saturate_31(L_sum1);
- L_sum2 = E_UTIL_saturate_31(L_sum2);
- L_sum3 = E_UTIL_saturate_31(L_sum3);
- L_sum4 = E_UTIL_saturate_31(L_sum4);
- L_sum1 += L_sum3;
- L_sum2 += L_sum4;
- L_sum1 = E_UTIL_saturate_31(L_sum1);
- L_sum2 = E_UTIL_saturate_31(L_sum2);
- L_sum = L_sum1 + L_sum2;
- L_sum = (E_UTIL_saturate_31(L_sum) << 1) + 1;
- /* Normalize acc in Q31 */
- sft = E_UTIL_norm_l(L_sum);
- L_sum = (L_sum << sft);
- *exp = (30 - sft); /* exponent = 0..30 */
- return (L_sum);
- }
- /*
- * E_UTIL_normalised_inverse_sqrt
- *
- * Parameters:
- * frac I/O: (Q31) normalized value (1.0 < frac <= 0.5)
- * exp I/O: exponent (value = frac x 2^exponent)
- *
- * Function:
- * Compute 1/sqrt(value).
- * If value is negative or zero, result is 1 (frac=7fffffff, exp=0).
- *
- * The function 1/sqrt(value) is approximated by a table and linear
- * interpolation.
- * 1. If exponant is odd then shift fraction right once.
- * 2. exponant = -((exponant - 1) >> 1)
- * 3. i = bit25 - b30 of fraction, 16 <= i <= 63 ->because of normalization.
- * 4. a = bit10 - b24
- * 5. i -= 16
- * 6. fraction = table[i]<<16 - (table[i] - table[i+1]) * a * 2
- *
- * Returns:
- * void
- */
- void E_UTIL_normalised_inverse_sqrt(Word32 *frac, Word16 *exp)
- {
- Word32 i, a, tmp;
- if (*frac <= (Word32) 0)
- {
- *exp = 0;
- *frac = 0x7fffffffL;
- return;
- }
- if ((Word16) (*exp & 1) == 1) /* If exponant odd -> shift right */
- {
- *frac = (*frac >> 1);
- }
- *exp = (Word16)(-((*exp - 1) >> 1));
- *frac = (*frac >> 9);
- i = *frac >> 16; /* Extract b25-b31 */
- *frac = (*frac >> 1);
- a = (Word16)*frac; /* Extract b10-b24 */
- a = a & 0x00007fff;
- i = i - 16;
- *frac = E_ROM_isqrt[i] << 16; /* table[i] << 16 */
- tmp = E_ROM_isqrt[i] - E_ROM_isqrt[i + 1]; /* table[i] - table[i+1]) */
- *frac = *frac - ((tmp * a) << 1); /* frac -= tmp*a*2 */
- return;
- }
- /*
- * E_UTIL_enc_synthesis
- *
- * Parameters:
- * Aq I: quantized Az
- * exc I: excitation at 12kHz
- * synth16k O: 16kHz synthesis signal
- * st I/O: State structure
- *
- * Function:
- * Synthesis of signal at 16kHz with HF extension.
- *
- * Returns:
- * The quantised gain index when using the highest mode, otherwise zero
- */
- Word32 E_UTIL_enc_synthesis(Float32 Aq[], Float32 exc[], Float32 synth16k[],
- Coder_State *st)
- {
- Float32 synth[L_SUBFR];
- Float32 HF[L_SUBFR16k]; /* High Frequency vector */
- Float32 Ap[M + 1];
- Float32 HF_SP[L_SUBFR16k]; /* High Frequency vector (from original signal) */
- Float32 HP_est_gain, HP_calc_gain, HP_corr_gain, fac, tmp, ener, dist_min;
- Float32 dist, gain2;
- Word32 i, hp_gain_ind = 0;
- /*
- * speech synthesis
- * ----------------
- * - Find synthesis speech corresponding to exc2[].
- * - Perform fixed deemphasis and hp 50hz filtering.
- * - Oversampling from 12.8kHz to 16kHz.
- */
- E_UTIL_synthesis(Aq, exc, synth, L_SUBFR, st->mem_syn2, 1);
- E_UTIL_deemph(synth, PREEMPH_FAC, L_SUBFR, &(st->mem_deemph));
- E_UTIL_hp50_12k8(synth, L_SUBFR, st->mem_sig_out);
- /* Original speech signal as reference for high band gain quantisation */
- memcpy(HF_SP, synth16k, L_SUBFR16k * sizeof(Float32));
- /*
- * HF noise synthesis
- * ------------------
- * - Generate HF noise between 6 and 7 kHz.
- * - Set energy of noise according to synthesis tilt.
- * tilt > 0.8 ==> - 14 dB (voiced)
- * tilt 0.5 ==> - 6 dB (voiced or noise)
- * tilt < 0.0 ==> 0 dB (noise)
- */
- /* generate white noise vector */
- for(i = 0; i < L_SUBFR16k; i++)
- {
- HF[i] = (Float32)E_UTIL_random(&(st->mem_seed));
- }
- /* set energy of white noise to energy of excitation */
- ener = 0.01F;
- tmp = 0.01F;
- for(i = 0; i < L_SUBFR; i++)
- {
- ener += exc[i] * exc[i];
- }
- for(i = 0; i < L_SUBFR16k; i++)
- {
- tmp += HF[i] * HF[i];
- }
- tmp = (Float32)(sqrt(ener / tmp));
- for(i = 0; i < L_SUBFR16k; i++)
- {
- HF[i] *= tmp;
- }
- /* find tilt of synthesis speech (tilt: 1=voiced, -1=unvoiced) */
- E_UTIL_hp400_12k8(synth, L_SUBFR, st->mem_hp400);
- ener = 0.001f;
- tmp = 0.001f;
- for(i = 1; i < L_SUBFR; i++)
- {
- ener += synth[i] * synth[i];
- tmp += synth[i] * synth[i - 1];
- }
- fac = tmp / ener;
- /* modify energy of white noise according to synthesis tilt */
- HP_est_gain = 1.0F - fac;
- gain2 = (1.0F - fac) * 1.25F;
- if(st->mem_vad_hist)
- {
- HP_est_gain = gain2;
- }
- if(HP_est_gain < 0.1)
- {
- HP_est_gain = 0.1f;
- }
- if(HP_est_gain > 1.0)
- {
- HP_est_gain = 1.0f;
- }
- /* synthesis of noise: 4.8kHz..5.6kHz --> 6kHz..7kHz */
- E_LPC_a_weight(Aq, Ap, 0.6f, M);
- E_UTIL_synthesis(Ap, HF, HF, L_SUBFR16k, st->mem_syn_hf, 1);
- /* noise High Pass filtering (0.94ms of delay) */
- E_UTIL_bp_6k_7k(HF, L_SUBFR16k, st->mem_hf);
- /* noise High Pass filtering (0.94ms of delay) */
- E_UTIL_bp_6k_7k(HF_SP, L_SUBFR16k, st->mem_hf2);
- ener = 0.001F;
- tmp = 0.001F;
- for(i = 0; i < L_SUBFR16k; i++)
- {
- ener += HF_SP[i] * HF_SP[i];
- tmp += HF[i] * HF[i];
- }
- HP_calc_gain = (Float32)sqrt(ener /tmp);
- st->mem_gain_alpha *= st->dtx_encSt->mem_dtx_hangover_count / 7;
- if(st->dtx_encSt->mem_dtx_hangover_count > 6)
- {
- st->mem_gain_alpha = 1.0F;
- }
- HP_corr_gain = (HP_calc_gain * st->mem_gain_alpha) +
- ((1.0F - st->mem_gain_alpha) * HP_est_gain);
- /* Quantise the correction gain */
- dist_min = 100000.0F;
- for(i = 0; i < 16; i++)
- {
- dist = (HP_corr_gain - E_ROM_hp_gain[i]) * (HP_corr_gain - E_ROM_hp_gain[i]);
- if(dist_min > dist)
- {
- dist_min = dist;
- hp_gain_ind = i;
- }
- }
- HP_corr_gain = (Float32)E_ROM_hp_gain[hp_gain_ind];
- /* return the quantised gain index when using the highest mode, otherwise zero */
- return(hp_gain_ind);
- }
- /*
- * E_UTIL_autocorr
- *
- * Parameters:
- * x I: input signal
- * r_h O: autocorrelations
- *
- * Function:
- * Compute the autocorrelations of windowed speech signal.
- * order of LP filter is M. Window size is L_WINDOW.
- * Analysis window is "window".
- *
- * Returns:
- * void
- */
- void E_UTIL_autocorr(Float32 *x, Float32 *r)
- {
- Float32 t[L_WINDOW + M];
- Word32 i, j;
- for (i = 0; i < L_WINDOW; i += 4)
- {
- t[i] = x[i] * E_ROM_hamming_cos[i];
- t[i + 1] = x[i + 1] * E_ROM_hamming_cos[i + 1];
- t[i + 2] = x[i + 2] * E_ROM_hamming_cos[i + 2];
- t[i + 3] = x[i + 3] * E_ROM_hamming_cos[i + 3];
- }
- memset(&t[L_WINDOW], 0, M * sizeof(Float32));
- memset(r, 0, (M + 1) * sizeof(Float32));
- for (j = 0; j < L_WINDOW; j++)
- {
- r[0] += t[j] * t[j];
- r[1] += t[j] * t[j + 1];
- r[2] += t[j] * t[j + 2];
- r[3] += t[j] * t[j + 3];
- r[4] += t[j] * t[j + 4];
- r[5] += t[j] * t[j + 5];
- r[6] += t[j] * t[j + 6];
- r[7] += t[j] * t[j + 7];
- r[8] += t[j] * t[j + 8];
- r[9] += t[j] * t[j + 9];
- r[10] += t[j] * t[j + 10];
- r[11] += t[j] * t[j + 11];
- r[12] += t[j] * t[j + 12];
- r[13] += t[j] * t[j + 13];
- r[14] += t[j] * t[j + 14];
- r[15] += t[j] * t[j + 15];
- r[16] += t[j] * t[j + 16];
- }
- if (r[0] < 1.0F)
- {
- r[0] = 1.0F;
- }
- return;
- }