enc_gain.c
上传用户:dangjiwu
上传日期:2013-07-19
资源大小:42019k
文件大小:17k
- /*
- *===================================================================
- * 3GPP AMR Wideband Floating-point Speech Codec
- *===================================================================
- */
- #include <math.h>
- #include "hlxclib/memory.h"
- #include "typedef.h"
- #include "enc_util.h"
- #define L_FRAME 256 /* Frame size */
- #define L_SUBFR 64 /* Subframe size */
- #define HP_ORDER 3
- #define L_INTERPOL1 4
- #define L_INTERPOL2 16
- #define PIT_SHARP 27853 /* pitch sharpening factor = 0.85 Q15 */
- #define F_PIT_SHARP 0.85F /* pitch sharpening factor */
- #define PIT_MIN 34 /* Minimum pitch lag with resolution 1/4 */
- #define UP_SAMP 4
- #define DIST_ISF_MAX 120
- #define DIST_ISF_THRES 60
- #define GAIN_PIT_THRES 0.9F
- #define GAIN_PIT_MIN 0.6F
- extern const Float32 E_ROM_corrweight[];
- extern const Float32 E_ROM_inter4_1[];
- extern const Word16 E_ROM_inter4_2[];
- /*
- * E_GAIN_clip_init
- *
- * Parameters:
- * mem O: memory of gain of pitch clipping algorithm
- *
- * Function:
- * Initialises state memory
- *
- * Returns:
- * void
- */
- void E_GAIN_clip_init(Float32 mem[])
- {
- mem[0] = DIST_ISF_MAX;
- mem[1] = GAIN_PIT_MIN;
- }
- /*
- * E_GAIN_clip_test
- *
- * Parameters:
- * mem I: memory of gain of pitch clipping algorithm
- *
- * Function:
- * Gain clipping test to avoid unstable synthesis on frame erasure
- *
- * Returns:
- * Test result
- */
- Word32 E_GAIN_clip_test(Float32 mem[])
- {
- Word32 clip;
- clip = 0;
- if ((mem[0] < DIST_ISF_THRES) && (mem[1] > GAIN_PIT_THRES))
- {
- clip = 1;
- }
- return (clip);
- }
- /*
- * E_GAIN_clip_isf_test
- *
- * Parameters:
- * isf I: isf values (in frequency domain)
- * mem I/O: memory of gain of pitch clipping algorithm
- *
- * Function:
- * Check resonance for pitch clipping algorithm
- *
- * Returns:
- * void
- */
- void E_GAIN_clip_isf_test(Float32 isf[], Float32 mem[])
- {
- Word32 i;
- Float32 dist, dist_min;
- dist_min = isf[1] - isf[0];
- for (i = 2; i < M - 1; i++)
- {
- dist = isf[i] - isf[i-1];
- if (dist < dist_min)
- {
- dist_min = dist;
- }
- }
- dist = 0.8F * mem[0] + 0.2F * dist_min;
- if (dist > DIST_ISF_MAX)
- {
- dist = DIST_ISF_MAX;
- }
- mem[0] = dist;
- return;
- }
- /*
- * E_GAIN_clip_pit_test
- *
- * Parameters:
- * gain_pit I: gain of quantized pitch
- * mem I/O: memory of gain of pitch clipping algorithm
- *
- * Function:
- * Test quantised gain of pitch for pitch clipping algorithm
- *
- * Returns:
- * void
- */
- void E_GAIN_clip_pit_test(Float32 gain_pit, Float32 mem[])
- {
- Float32 gain;
- gain = 0.9F * mem[1] + 0.1F * gain_pit;
- if (gain < GAIN_PIT_MIN)
- {
- gain = GAIN_PIT_MIN;
- }
- mem[1] = gain;
- return;
- }
- /*
- * E_GAIN_lp_decim2
- *
- * Parameters:
- * x I/O: signal to process
- * l I: size of filtering
- * mem I/O: memory (size = 3)
- *
- * Function:
- * Decimate a vector by 2 with 2nd order fir filter.
- *
- * Returns:
- * void
- */
- void E_GAIN_lp_decim2(Float32 x[], Word32 l, Float32 *mem)
- {
- Float32 x_buf[L_FRAME + 3];
- Float32 temp;
- Word32 i, j;
- /* copy initial filter states into buffer */
- memcpy(x_buf, mem, 3 * sizeof(Float32));
- memcpy(&x_buf[3], x, l * sizeof(Float32));
- for (i = 0; i < 3; i++)
- {
- mem[i] =
- ((x[l - 3 + i] > 1e-10) | (x[l - 3 + i] < -1e-10)) ? x[l - 3 + i] : 0;
- }
- for (i = 0, j = 0; i < l; i += 2, j++)
- {
- temp = x_buf[i] * 0.13F;
- temp += x_buf[i + 1] * 0.23F;
- temp += x_buf[i + 2] * 0.28F;
- temp += x_buf[i + 3] * 0.23F;
- temp += x_buf[i + 4] * 0.13F;
- x[j] = temp;
- }
- return;
- }
- /*
- * E_GAIN_open_loop_search
- *
- * Parameters:
- * wsp I: signal (end pntr) used to compute the open loop pitch
- * L_min I: minimum pitch lag
- * L_max I: maximum pitch lag
- * nFrame I: length of frame to compute pitch
- * L_0 I: old open-loop lag
- * gain O: open-loop pitch-gain
- * hp_wsp_mem I/O: memory of the highpass filter for hp_wsp[] (lg = 9)
- * hp_old_wsp O: highpass wsp[]
- * weight_flg I: is weighting function used
- *
- * Function:
- * Find open loop pitch lag
- *
- * Returns:
- * open loop pitch lag
- */
- Word32 E_GAIN_open_loop_search(Float32 *wsp, Word32 L_min, Word32 L_max,
- Word32 nFrame, Word32 L_0, Float32 *gain,
- Float32 *hp_wsp_mem, Float32 hp_old_wsp[],
- UWord8 weight_flg)
- {
- Word32 i, j, k, L = 0;
- Float32 o, R0, R1, R2, R0_max = -1.0e23f;
- const Float32 *ww, *we;
- Float32 *data_a, *data_b, *hp_wsp, *p, *p1;
- ww = &E_ROM_corrweight[198];
- we = &E_ROM_corrweight[98 + L_max - L_0];
- for (i = L_max; i > L_min; i--)
- {
- p = &wsp[0];
- p1 = &wsp[-i];
- /* Compute the correlation R0 and the energy R1. */
- R0 = 0.0;
- for (j = 0; j < nFrame; j += 2)
- {
- R0 += p[j] * p1[j];
- R0 += p[j + 1] * p1[j + 1];
- }
- /* Weighting of the correlation function. */
- R0 *= *ww--;
- /* Weight the neighborhood of the old lag. */
- if ((L_0 > 0) & (weight_flg == 1))
- {
- R0 *= *we--;
- }
- /* Store the values if a currest maximum has been found. */
- if (R0 >= R0_max)
- {
- R0_max = R0;
- L = i;
- }
- }
- data_a = hp_wsp_mem;
- data_b = hp_wsp_mem + HP_ORDER;
- hp_wsp = hp_old_wsp + L_max;
- for (k = 0; k < nFrame; k++)
- {
- data_b[0] = data_b[1];
- data_b[1] = data_b[2];
- data_b[2] = data_b[3];
- data_b[HP_ORDER] = wsp[k];
- o = data_b[0] * 0.83787057505665F;
- o += data_b[1] * -2.50975570071058F;
- o += data_b[2] * 2.50975570071058F;
- o += data_b[3] * -0.83787057505665F;
- o -= data_a[0] * -2.64436711600664F;
- o -= data_a[1] * 2.35087386625360F;
- o -= data_a[2] * -0.70001156927424F;
- data_a[2] = data_a[1];
- data_a[1] = data_a[0];
- data_a[0] = o;
- hp_wsp[k] = o;
- }
- p = &hp_wsp[0];
- p1 = &hp_wsp[-L];
- R0 = 0.0F;
- R1 = 0.0F;
- R2 = 0.0F;
- for (j = 0; j < nFrame; j++)
- {
- R1 += p1[j] * p1[j];
- R2 += p[j] * p[j];
- R0 += p[j] * p1[j];
- }
- *gain = (Float32)(R0 / (sqrt(R1 * R2) + 1e-5));
- memcpy(hp_old_wsp, &hp_old_wsp[nFrame], L_max * sizeof(Float32));
- return(L);
- }
- /*
- * E_GAIN_sort
- *
- * Parameters:
- * n I: number of lags
- * ra I/O: lags / sorted lags
- *
- * Function:
- * Sort open-loop lags
- *
- * Returns:
- * void
- */
- static void E_GAIN_sort(Word32 n, Word32 *ra)
- {
- Word32 l, j, ir, i, rra;
- l = (n >> 1) + 1;
- ir = n;
- for (;;)
- {
- if (l > 1)
- {
- rra = ra[--l];
- }
- else
- {
- rra = ra[ir];
- ra[ir] = ra[1];
- if (--ir == 1)
- {
- ra[1] = rra;
- return;
- }
- }
- i = l;
- j = l << 1;
- while (j <= ir)
- {
- if (j < ir && ra[j] < ra[j + 1])
- {
- ++j;
- }
- if (rra < ra[j])
- {
- ra[i] = ra[j];
- j += (i = j);
- }
- else
- {
- j = ir + 1;
- }
- }
- ra[i] = rra;
- }
- }
- /*
- * E_GAIN_olag_median
- *
- * Parameters:
- * prev_ol_lag I: previous open-loop lag
- * old_ol_lag I: old open-loop lags
- *
- * Function:
- * Median of 5 previous open-loop lags
- *
- * Returns:
- * median of 5 previous open-loop lags
- */
- Word32 E_GAIN_olag_median(Word32 prev_ol_lag, Word32 old_ol_lag[5])
- {
- Word32 tmp[6] = {0};
- Word32 i;
- /* Use median of 5 previous open-loop lags as old lag */
- for (i = 4; i > 0; i--)
- {
- old_ol_lag[i] = old_ol_lag[i-1];
- }
- old_ol_lag[0] = prev_ol_lag;
- for (i = 0; i < 5; i++)
- {
- tmp[i+1] = old_ol_lag[i];
- }
- E_GAIN_sort(5, tmp);
- return tmp[3];
- }
- /*
- * E_GAIN_norm_corr
- *
- * Parameters:
- * exc I: excitation buffer
- * xn I: target signal
- * h I: weighted synthesis filter impulse response (Q15)
- * t0_min I: minimum value in the searched range
- * t0_max I: maximum value in the searched range
- * corr_norm O: normalized correlation (Q15)
- *
- * Function:
- * Find the normalized correlation between the target vector and the
- * filtered past excitation (correlation between target and filtered
- * excitation divided by the square root of energy of filtered excitation)
- * Size of subframe = L_SUBFR.
- *
- * Returns:
- * void
- */
- static void E_GAIN_norm_corr(Float32 exc[], Float32 xn[], Float32 h[],
- Word32 t_min, Word32 t_max, Float32 corr_norm[])
- {
- Float32 excf[L_SUBFR]; /* filtered past excitation */
- Float32 alp, ps, norm;
- Word32 t, j, k;
- k = - t_min;
- /* compute the filtered excitation for the first delay t_min */
- E_UTIL_f_convolve(&exc[k], h, excf);
- /* loop for every possible period */
- for (t = t_min; t <= t_max; t++)
- {
- /* Compute correlation between xn[] and excf[] */
- ps = 0.0F;
- alp = 0.01F;
- for (j = 0; j < L_SUBFR; j++)
- {
- ps += xn[j] * excf[j];
- alp += excf[j] * excf[j];
- }
- /* Compute 1/sqrt(energie of excf[]) */
- norm = (Float32)(1.0F / sqrt(alp));
- /* Normalize correlation = correlation * (1/sqrt(energy)) */
- corr_norm[t] = ps * norm;
- /* update the filtered excitation excf[] for the next iteration */
- if (t != t_max)
- {
- k--;
- for (j = L_SUBFR - 1; j > 0; j--)
- {
- excf[j] = excf[j - 1] + exc[k] * h[j];
- }
- excf[0] = exc[k];
- }
- }
- return;
- }
- /*
- * E_GAIN_norm_corr_interpolate
- *
- * Parameters:
- * x I: input vector
- * frac I: fraction (-4..+3)
- *
- * Function:
- * Interpolating the normalized correlation
- *
- * Returns:
- * interpolated value
- */
- static Float32 E_GAIN_norm_corr_interpolate(Float32 *x, Word32 frac)
- {
- Float32 s, *x1, *x2;
- const Float32 *c1, *c2;
- if (frac < 0)
- {
- frac += 4;
- x--;
- }
- x1 = &x[0];
- x2 = &x[1];
- c1 = &E_ROM_inter4_1[frac];
- c2 = &E_ROM_inter4_1[4 - frac];
- s = x1[0] * c1[0] + x2[0] * c2[0];
- s += x1[-1] * c1[4] + x2[1] * c2[4];
- s += x1[-2] * c1[8] + x2[2] * c2[8];
- s += x1[-3] * c1[12] + x2[3] * c2[12];
- return s;
- }
- /*
- * E_GAIN_closed_loop_search
- *
- * Parameters:
- * exc I: excitation buffer
- * xn I: target signal
- * h I: weighted synthesis filter impulse response
- * t0_min I: minimum value in the searched range
- * t0_max I: maximum value in the searched range
- * pit_frac O: chosen fraction
- * i_subfr I: flag to first subframe
- * t0_fr2 I: minimum value for resolution 1/2
- * t0_fr1 I: minimum value for resolution 1
- *
- * Function:
- * Find the closed loop pitch period with 1/4 subsample resolution.
- *
- * Returns:
- * chosen integer pitch lag
- */
- Word32 E_GAIN_closed_loop_search(Float32 exc[], Float32 xn[], Float32 h[],
- Word32 t0_min, Word32 t0_max, Word32 *pit_frac,
- Word32 i_subfr, Word32 t0_fr2, Word32 t0_fr1)
- {
- Float32 corr_v[15 + 2 * L_INTERPOL1 + 1];
- Float32 cor_max, max, temp;
- Float32 *corr;
- Word32 i, fraction, step;
- Word32 t0, t_min, t_max;
- /* Find interval to compute normalized correlation */
- t_min = t0_min - L_INTERPOL1;
- t_max = t0_max + L_INTERPOL1;
- /* allocate memory to normalized correlation vector */
- corr = &corr_v[-t_min]; /* corr[t_min..t_max] */
- /* Compute normalized correlation between target and filtered excitation */
- E_GAIN_norm_corr(exc, xn, h, t_min, t_max, corr);
- /* find integer pitch */
- max = corr[t0_min];
- t0 = t0_min;
- for(i = t0_min + 1; i <= t0_max; i++)
- {
- if( corr[i] > max)
- {
- max = corr[i];
- t0 = i;
- }
- }
- /* If first subframe and t0 >= t0_fr1, do not search fractionnal pitch */
- if((i_subfr == 0) & (t0 >= t0_fr1))
- {
- *pit_frac = 0;
- return(t0);
- }
- /*
- * Search fractionnal pitch with 1/4 subsample resolution.
- * Test the fractions around t0 and choose the one which maximizes
- * the interpolated normalized correlation.
- */
- step = 1; /* 1/4 subsample resolution */
- fraction = -3;
- if (((i_subfr == 0) & (t0 >= t0_fr2)) | (t0_fr2 == PIT_MIN))
- {
- step = 2; /* 1/2 subsample resolution */
- fraction = -2;
- }
- if (t0 == t0_min)
- {
- fraction = 0;
- }
- cor_max = E_GAIN_norm_corr_interpolate(&corr[t0], fraction);
- for (i = (fraction + step); i <= 3; i += step)
- {
- temp = E_GAIN_norm_corr_interpolate(&corr[t0], i);
- if (temp > cor_max)
- {
- cor_max = temp;
- fraction = i;
- }
- }
- /* limit the fraction value in the interval [0,1,2,3] */
- if (fraction < 0)
- {
- fraction += 4;
- t0 -= 1;
- }
- *pit_frac = fraction;
- return (t0);
- }
- /*
- * E_GAIN_adaptive_codebook_excitation
- *
- * Parameters:
- * exc I/O: excitation buffer
- * T0 I: integer pitch lag
- * frac I: fraction of lag
- * L_subfr I: subframe size
- *
- * Function:
- * Compute the result of Word32 term prediction with fractional
- * interpolation of resolution 1/4.
- *
- * Returns:
- * interpolated signal (adaptive codebook excitation)
- */
- void E_GAIN_adaptive_codebook_excitation(Word16 exc[], Word16 T0, Word32 frac, Word16 L_subfr)
- {
- Word32 i, j, k, L_sum;
- Word16 *x;
- x = &exc[-T0];
- frac = -(frac);
- if (frac < 0)
- {
- frac = (frac + UP_SAMP);
- x--;
- }
- x = x - L_INTERPOL2 + 1;
- for (j = 0; j < L_subfr; j++)
- {
- L_sum = 0L;
- for (i = 0, k = ((UP_SAMP - 1) - frac); i < 2 * L_INTERPOL2; i++, k += UP_SAMP)
- {
- L_sum = L_sum + (x[i] * E_ROM_inter4_2[k]);
- }
- L_sum = (L_sum + 0x2000) >> 14;
- exc[j] = E_UTIL_saturate(L_sum);
- x++;
- }
- return;
- }
- /*
- * E_GAIN_pitch_sharpening
- *
- * Parameters:
- * x I/O: impulse response (or algebraic code)
- * pit_lag I: pitch lag
- *
- * Function:
- * Performs Pitch sharpening routine for one subframe.
- * pitch sharpening factor is 0.85
- *
- * Returns:
- * void
- */
- void E_GAIN_pitch_sharpening(Word16 *x, Word16 pit_lag)
- {
- Word32 L_tmp, i;
- for (i = pit_lag; i < L_SUBFR; i++)
- {
- L_tmp = x[i] << 15;
- L_tmp += x[i - pit_lag] * PIT_SHARP;
- x[i] = (Word16)((L_tmp + 0x4000) >> 15);
- }
- return;
- }
- void E_GAIN_f_pitch_sharpening(Float32 *x, Word32 pit_lag)
- {
- Word32 i;
- for (i = pit_lag; i < L_SUBFR; i++)
- {
- x[i] += x[i - pit_lag] * F_PIT_SHARP;
- }
- return;
- }
- /*
- * E_GAIN_voice_factor
- *
- * Parameters:
- * exc I: pitch excitation (Q_exc)
- * Q_exc I: exc format
- * gain_pit I: gain of pitch (Q14)
- * code I: Fixed codebook excitation (Q9)
- * gain_code I: gain of code (Q0)
- *
- *
- * Function:
- * Find the voicing factor (1=voice to -1=unvoiced)
- * Subframe length is L_SUBFR
- *
- * Returns:
- * factor (-1=unvoiced to 1=voiced) (Q15)
- */
- Word32 E_GAIN_voice_factor(Word16 exc[], Word16 Q_exc, Word16 gain_pit,
- Word16 code[], Word16 gain_code)
- {
- Word32 i, L_tmp, tmp, exp, ener1, exp1, ener2, exp2;
- ener1 = E_UTIL_dot_product12(exc, exc, L_SUBFR, &exp1) >> 16;
- exp1 = exp1 - (Q_exc + Q_exc);
- L_tmp = (gain_pit * gain_pit) << 1;
- exp = E_UTIL_norm_l(L_tmp);
- tmp = (L_tmp << exp) >> 16;
- ener1 = (ener1 * tmp) >> 15;
- exp1 = (exp1 - exp) - 10; /* 10 -> gain_pit Q14 to Q9 */
- ener2 = E_UTIL_dot_product12(code, code, L_SUBFR, &exp2) >> 16;
- exp = E_UTIL_norm_s(gain_code);
- tmp = gain_code << exp;
- tmp = (tmp * tmp) >> 15;
- ener2 = (ener2 * tmp) >> 15;
- exp2 = exp2 - (exp + exp);
- i = exp1 - exp2;
- if (i >= 0)
- {
- ener1 = ener1 >> 1;
- ener2 = ener2 >> (i + 1);
- }
- else
- {
- i = 1 - i;
- if (i < 32)
- {
- ener1 = ener1 >> i;
- }
- else
- {
- ener1 = 0;
- }
- ener2 = ener2 >> 1;
- }
- tmp = ener1 - ener2;
- ener1 = (ener1 + ener2) + 1;
- tmp = (tmp << 15) / ener1;
- return (tmp);
- }