short_term.c
上传用户:sy_wanhua
上传日期:2013-07-25
资源大小:3048k
文件大小:10k
- /*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
- /* $Header: /cvsroot/vocal.modules/contrib/libsndfile-0.0.22/src/GSM610/short_term.c,v 1.2 2001/02/27 19:23:20 deepalir Exp $ */
- #include <stdio.h>
- #include <assert.h>
- #include "private.h"
- #include "gsm.h"
- #include "proto.h"
- /*
- * SHORT TERM ANALYSIS FILTERING SECTION
- */
- /* 4.2.8 */
- static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
- word * LARc, /* coded log area ratio [0..7] IN */
- word * LARpp) /* out: decoded .. */
- {
- register word temp1 /* , temp2 */;
- register long ltmp; /* for GSM_ADD */
- /* This procedure requires for efficient implementation
- * two tables.
- *
- * INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
- * MIC[1..8] = minimum value of the LARc[1..8]
- */
- /* Compute the LARpp[1..8]
- */
- /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
- *
- * temp1 = GSM_ADD( *LARc, *MIC ) << 10;
- * temp2 = *B << 1;
- * temp1 = GSM_SUB( temp1, temp2 );
- *
- * assert(*INVA != MIN_WORD);
- *
- * temp1 = GSM_MULT_R( *INVA, temp1 );
- * *LARpp = GSM_ADD( temp1, temp1 );
- * }
- */
- #undef STEP
- #define STEP( B, MIC, INVA )
- temp1 = GSM_ADD( *LARc++, MIC ) << 10;
- temp1 = GSM_SUB( temp1, B << 1 );
- temp1 = GSM_MULT_R( INVA, temp1 );
- *LARpp++ = GSM_ADD( temp1, temp1 );
- STEP( 0, -32, 13107 );
- STEP( 0, -32, 13107 );
- STEP( 2048, -16, 13107 );
- STEP( -2560, -16, 13107 );
- STEP( 94, -8, 19223 );
- STEP( -1792, -8, 17476 );
- STEP( -341, -4, 31454 );
- STEP( -1144, -4, 29708 );
- /* NOTE: the addition of *MIC is used to restore
- * the sign of *LARc.
- */
- }
- /* 4.2.9 */
- /* Computation of the quantized reflection coefficients
- */
- /* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
- */
- /*
- * Within each frame of 160 analyzed speech samples the short term
- * analysis and synthesis filters operate with four different sets of
- * coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
- * and the actual set of decoded LARs (LARpp(j))
- *
- * (Initial value: LARpp(j-1)[1..8] = 0.)
- */
- static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
- register word * LARpp_j_1,
- register word * LARpp_j,
- register word * LARp)
- {
- register int i;
- register longword ltmp;
- for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
- *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
- *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
- }
- }
- static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
- register word * LARpp_j_1,
- register word * LARpp_j,
- register word * LARp)
- {
- register int i;
- register longword ltmp;
- for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
- *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
- }
- }
- static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
- register word * LARpp_j_1,
- register word * LARpp_j,
- register word * LARp)
- {
- register int i;
- register longword ltmp;
- for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
- *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
- *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
- }
- }
- static void Coefficients_40_159 P2((LARpp_j, LARp),
- register word * LARpp_j,
- register word * LARp)
- {
- register int i;
- for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
- *LARp = *LARpp_j;
- }
- /* 4.2.9.2 */
- static void LARp_to_rp P1((LARp),
- register word * LARp) /* [0..7] IN/OUT */
- /*
- * The input of this procedure is the interpolated LARp[0..7] array.
- * The reflection coefficients, rp[i], are used in the analysis
- * filter and in the synthesis filter.
- */
- {
- register int i;
- register word temp;
- register longword ltmp;
- for (i = 1; i <= 8; i++, LARp++) {
- /* temp = GSM_ABS( *LARp );
- *
- * if (temp < 11059) temp <<= 1;
- * else if (temp < 20070) temp += 11059;
- * else temp = GSM_ADD( temp >> 2, 26112 );
- *
- * *LARp = *LARp < 0 ? -temp : temp;
- */
- if (*LARp < 0) {
- temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
- *LARp = - ((temp < 11059) ? temp << 1
- : ((temp < 20070) ? temp + 11059
- : GSM_ADD( temp >> 2, 26112 )));
- } else {
- temp = *LARp;
- *LARp = (temp < 11059) ? temp << 1
- : ((temp < 20070) ? temp + 11059
- : GSM_ADD( temp >> 2, 26112 ));
- }
- }
- }
- /* 4.2.10 */
- static void Short_term_analysis_filtering P4((S,rp,k_n,s),
- struct gsm_state * S,
- register word * rp, /* [0..7] IN */
- register int k_n, /* k_end - k_start */
- register word * s /* [0..n-1] IN/OUT */
- )
- /*
- * This procedure computes the short term residual signal d[..] to be fed
- * to the RPE-LTP loop from the s[..] signal and from the local rp[..]
- * array (quantized reflection coefficients). As the call of this
- * procedure can be done in many ways (see the interpolation of the LAR
- * coefficient), it is assumed that the computation begins with index
- * k_start (for arrays d[..] and s[..]) and stops with index k_end
- * (k_start and k_end are defined in 4.2.9.1). This procedure also
- * needs to keep the array u[0..7] in memory for each call.
- */
- {
- register word * u = S->u;
- register int i;
- register word di, zzz, ui, sav, rpi;
- register longword ltmp;
- for (; k_n--; s++) {
- di = sav = *s;
- for (i = 0; i < 8; i++) { /* YYY */
- ui = u[i];
- rpi = rp[i];
- u[i] = sav;
- zzz = GSM_MULT_R(rpi, di);
- sav = GSM_ADD( ui, zzz);
- zzz = GSM_MULT_R(rpi, ui);
- di = GSM_ADD( di, zzz );
- }
- *s = di;
- }
- }
- #if defined(USE_FLOAT_MUL) && defined(FAST)
- static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
- struct gsm_state * S,
- register word * rp, /* [0..7] IN */
- register int k_n, /* k_end - k_start */
- register word * s /* [0..n-1] IN/OUT */
- )
- {
- register word * u = S->u;
- register int i;
- float uf[8],
- rpf[8];
- register float scalef = 3.0517578125e-5;
- register float sav, di, temp;
- for (i = 0; i < 8; ++i) {
- uf[i] = u[i];
- rpf[i] = rp[i] * scalef;
- }
- for (; k_n--; s++) {
- sav = di = *s;
- for (i = 0; i < 8; ++i) {
- register float rpfi = rpf[i];
- register float ufi = uf[i];
- uf[i] = sav;
- temp = rpfi * di + ufi;
- di += rpfi * ufi;
- sav = temp;
- }
- *s = di;
- }
- for (i = 0; i < 8; ++i) u[i] = uf[i];
- }
- #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
- static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
- struct gsm_state * S,
- register word * rrp, /* [0..7] IN */
- register int k, /* k_end - k_start */
- register word * wt, /* [0..k-1] IN */
- register word * sr /* [0..k-1] OUT */
- )
- {
- register word * v = S->v;
- register int i;
- register word sri, tmp1, tmp2;
- register longword ltmp; /* for GSM_ADD & GSM_SUB */
- while (k--) {
- sri = *wt++;
- for (i = 8; i--;) {
- /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
- */
- tmp1 = rrp[i];
- tmp2 = v[i];
- tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
- ? MAX_WORD
- : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
- + 16384) >> 15)) ;
- sri = GSM_SUB( sri, tmp2 );
- /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
- */
- tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
- ? MAX_WORD
- : 0x0FFFF & (( (longword)tmp1 * (longword)sri
- + 16384) >> 15)) ;
- v[i+1] = GSM_ADD( v[i], tmp1);
- }
- *sr++ = v[0] = sri;
- }
- }
- #if defined(FAST) && defined(USE_FLOAT_MUL)
- static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
- struct gsm_state * S,
- register word * rrp, /* [0..7] IN */
- register int k, /* k_end - k_start */
- register word * wt, /* [0..k-1] IN */
- register word * sr /* [0..k-1] OUT */
- )
- {
- register word * v = S->v;
- register int i;
- float va[9], rrpa[8];
- register float scalef = 3.0517578125e-5, temp;
- for (i = 0; i < 8; ++i) {
- va[i] = v[i];
- rrpa[i] = (float)rrp[i] * scalef;
- }
- while (k--) {
- register float sri = *wt++;
- for (i = 8; i--;) {
- sri -= rrpa[i] * va[i];
- if (sri < -32768.) sri = -32768.;
- else if (sri > 32767.) sri = 32767.;
- temp = va[i] + rrpa[i] * sri;
- if (temp < -32768.) temp = -32768.;
- else if (temp > 32767.) temp = 32767.;
- va[i+1] = temp;
- }
- *sr++ = va[0] = sri;
- }
- for (i = 0; i < 9; ++i) v[i] = va[i];
- }
- #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
- void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
- struct gsm_state * S,
- word * LARc, /* coded log area ratio [0..7] IN */
- word * s /* signal [0..159] IN/OUT */
- )
- {
- word * LARpp_j = S->LARpp[ S->j ];
- word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
- word LARp[8];
- #undef FILTER
- #if defined(FAST) && defined(USE_FLOAT_MUL)
- # define FILTER (* (S->fast
- ? Fast_Short_term_analysis_filtering
- : Short_term_analysis_filtering ))
- #else
- # define FILTER Short_term_analysis_filtering
- #endif
- Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
- Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, s);
- Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 14, s + 13);
- Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, s + 27);
- Coefficients_40_159( LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 120, s + 40);
- }
- void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
- struct gsm_state * S,
- word * LARcr, /* received log area ratios [0..7] IN */
- word * wt, /* received d [0..159] IN */
- word * s /* signal s [0..159] OUT */
- )
- {
- word * LARpp_j = S->LARpp[ S->j ];
- word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
- word LARp[8];
- #undef FILTER
- #if defined(FAST) && defined(USE_FLOAT_MUL)
- # define FILTER (* (S->fast
- ? Fast_Short_term_synthesis_filtering
- : Short_term_synthesis_filtering ))
- #else
- # define FILTER Short_term_synthesis_filtering
- #endif
- Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
- Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, wt, s );
- Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 14, wt + 13, s + 13 );
- Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, wt + 27, s + 27 );
- Coefficients_40_159( LARpp_j, LARp );
- LARp_to_rp( LARp );
- FILTER(S, LARp, 120, wt + 40, s + 40);
- }