inftrees.c
上传用户:yhdzpy8989
上传日期:2007-06-13
资源大小:13604k
文件大小:16k
源码类别:

生物技术

开发平台:

C/C++

  1. /*
  2.  * ===========================================================================
  3.  * PRODUCTION $Log: inftrees.c,v $
  4.  * PRODUCTION Revision 1000.0  2003/10/29 15:49:39  gouriano
  5.  * PRODUCTION PRODUCTION: IMPORTED [ORIGINAL] Dev-tree R1.1
  6.  * PRODUCTION
  7.  * ===========================================================================
  8.  */
  9. /* inftrees.c -- generate Huffman trees for efficient decoding
  10.  * Copyright (C) 1995-2002 Mark Adler
  11.  * For conditions of distribution and use, see copyright notice in zlib.h 
  12.  */
  13. #include "zutil.h"
  14. #include "inftrees.h"
  15. #if !defined(BUILDFIXED) && !defined(STDC)
  16. #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
  17. #endif
  18. const char inflate_copyright[] =
  19.    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
  20. /*
  21.   If you use the zlib library in a product, an acknowledgment is welcome
  22.   in the documentation of your product. If for some reason you cannot
  23.   include such an acknowledgment, I would appreciate that you keep this
  24.   copyright string in the executable of your product.
  25.  */
  26. struct internal_state  {int dummy;}; /* for buggy compilers */
  27. /* simplify the use of the inflate_huft type with some defines */
  28. #define exop word.what.Exop
  29. #define bits word.what.Bits
  30. local int huft_build OF((
  31.     uIntf *,            /* code lengths in bits */
  32.     uInt,               /* number of codes */
  33.     uInt,               /* number of "simple" codes */
  34.     const uIntf *,      /* list of base values for non-simple codes */
  35.     const uIntf *,      /* list of extra bits for non-simple codes */
  36.     inflate_huft * FAR*,/* result: starting table */
  37.     uIntf *,            /* maximum lookup bits (returns actual) */
  38.     inflate_huft *,     /* space for trees */
  39.     uInt *,             /* hufts used in space */
  40.     uIntf * ));         /* space for values */
  41. /* Tables for deflate from PKZIP's appnote.txt. */
  42. local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
  43.         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
  44.         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
  45.         /* see note #13 above about 258 */
  46. local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
  47.         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
  48.         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
  49. local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
  50.         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
  51.         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
  52.         8193, 12289, 16385, 24577};
  53. local const uInt cpdext[30] = { /* Extra bits for distance codes */
  54.         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
  55.         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
  56.         12, 12, 13, 13};
  57. /*
  58.    Huffman code decoding is performed using a multi-level table lookup.
  59.    The fastest way to decode is to simply build a lookup table whose
  60.    size is determined by the longest code.  However, the time it takes
  61.    to build this table can also be a factor if the data being decoded
  62.    is not very long.  The most common codes are necessarily the
  63.    shortest codes, so those codes dominate the decoding time, and hence
  64.    the speed.  The idea is you can have a shorter table that decodes the
  65.    shorter, more probable codes, and then point to subsidiary tables for
  66.    the longer codes.  The time it costs to decode the longer codes is
  67.    then traded against the time it takes to make longer tables.
  68.    This results of this trade are in the variables lbits and dbits
  69.    below.  lbits is the number of bits the first level table for literal/
  70.    length codes can decode in one step, and dbits is the same thing for
  71.    the distance codes.  Subsequent tables are also less than or equal to
  72.    those sizes.  These values may be adjusted either when all of the
  73.    codes are shorter than that, in which case the longest code length in
  74.    bits is used, or when the shortest code is *longer* than the requested
  75.    table size, in which case the length of the shortest code in bits is
  76.    used.
  77.    There are two different values for the two tables, since they code a
  78.    different number of possibilities each.  The literal/length table
  79.    codes 286 possible values, or in a flat code, a little over eight
  80.    bits.  The distance table codes 30 possible values, or a little less
  81.    than five bits, flat.  The optimum values for speed end up being
  82.    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
  83.    The optimum values may differ though from machine to machine, and
  84.    possibly even between compilers.  Your mileage may vary.
  85.  */
  86. /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
  87. #define BMAX 15         /* maximum bit length of any code */
  88. local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
  89. uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
  90. uInt n;                 /* number of codes (assumed <= 288) */
  91. uInt s;                 /* number of simple-valued codes (0..s-1) */
  92. const uIntf *d;         /* list of base values for non-simple codes */
  93. const uIntf *e;         /* list of extra bits for non-simple codes */
  94. inflate_huft * FAR *t;  /* result: starting table */
  95. uIntf *m;               /* maximum lookup bits, returns actual */
  96. inflate_huft *hp;       /* space for trees */
  97. uInt *hn;               /* hufts used in space */
  98. uIntf *v;               /* working area: values in order of bit length */
  99. /* Given a list of code lengths and a maximum table size, make a set of
  100.    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
  101.    if the given code set is incomplete (the tables are still built in this
  102.    case), or Z_DATA_ERROR if the input is invalid. */
  103. {
  104.   uInt a;                       /* counter for codes of length k */
  105.   uInt c[BMAX+1];               /* bit length count table */
  106.   uInt f;                       /* i repeats in table every f entries */
  107.   int g;                        /* maximum code length */
  108.   int h;                        /* table level */
  109.   register uInt i;              /* counter, current code */
  110.   register uInt j;              /* counter */
  111.   register int k;               /* number of bits in current code */
  112.   int l;                        /* bits per table (returned in m) */
  113.   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
  114.   register uIntf *p;            /* pointer into c[], b[], or v[] */
  115.   inflate_huft *q;              /* points to current table */
  116.   struct inflate_huft_s r;      /* table entry for structure assignment */
  117.   inflate_huft *u[BMAX];        /* table stack */
  118.   register int w;               /* bits before this table == (l * h) */
  119.   uInt x[BMAX+1];               /* bit offsets, then code stack */
  120.   uIntf *xp;                    /* pointer into x */
  121.   int y;                        /* number of dummy codes added */
  122.   uInt z;                       /* number of entries in current table */
  123.   /* Generate counts for each bit length */
  124.   p = c;
  125. #define C0 *p++ = 0;
  126. #define C2 C0 C0 C0 C0
  127. #define C4 C2 C2 C2 C2
  128.   C4                            /* clear c[]--assume BMAX+1 is 16 */
  129.   p = b;  i = n;
  130.   do {
  131.     c[*p++]++;                  /* assume all entries <= BMAX */
  132.   } while (--i);
  133.   if (c[0] == n)                /* null input--all zero length codes */
  134.   {
  135.     *t = (inflate_huft *)Z_NULL;
  136.     *m = 0;
  137.     return Z_OK;
  138.   }
  139.   /* Find minimum and maximum length, bound *m by those */
  140.   l = *m;
  141.   for (j = 1; j <= BMAX; j++)
  142.     if (c[j])
  143.       break;
  144.   k = j;                        /* minimum code length */
  145.   if ((uInt)l < j)
  146.     l = j;
  147.   for (i = BMAX; i; i--)
  148.     if (c[i])
  149.       break;
  150.   g = i;                        /* maximum code length */
  151.   if ((uInt)l > i)
  152.     l = i;
  153.   *m = l;
  154.   /* Adjust last length count to fill out codes, if needed */
  155.   for (y = 1 << j; j < i; j++, y <<= 1)
  156.     if ((y -= c[j]) < 0)
  157.       return Z_DATA_ERROR;
  158.   if ((y -= c[i]) < 0)
  159.     return Z_DATA_ERROR;
  160.   c[i] += y;
  161.   /* Generate starting offsets into the value table for each length */
  162.   x[1] = j = 0;
  163.   p = c + 1;  xp = x + 2;
  164.   while (--i) {                 /* note that i == g from above */
  165.     *xp++ = (j += *p++);
  166.   }
  167.   /* Make a table of values in order of bit lengths */
  168.   p = b;  i = 0;
  169.   do {
  170.     if ((j = *p++) != 0)
  171.       v[x[j]++] = i;
  172.   } while (++i < n);
  173.   n = x[g];                     /* set n to length of v */
  174.   /* Generate the Huffman codes and for each, make the table entries */
  175.   x[0] = i = 0;                 /* first Huffman code is zero */
  176.   p = v;                        /* grab values in bit order */
  177.   h = -1;                       /* no tables yet--level -1 */
  178.   w = -l;                       /* bits decoded == (l * h) */
  179.   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
  180.   q = (inflate_huft *)Z_NULL;   /* ditto */
  181.   z = 0;                        /* ditto */
  182.   /* go through the bit lengths (k already is bits in shortest code) */
  183.   for (; k <= g; k++)
  184.   {
  185.     a = c[k];
  186.     while (a--)
  187.     {
  188.       /* here i is the Huffman code of length k bits for value *p */
  189.       /* make tables up to required level */
  190.       while (k > w + l)
  191.       {
  192.         h++;
  193.         w += l;                 /* previous table always l bits */
  194.         /* compute minimum size table less than or equal to l bits */
  195.         z = g - w;
  196.         z = z > (uInt)l ? l : z;        /* table size upper limit */
  197.         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
  198.         {                       /* too few codes for k-w bit table */
  199.           f -= a + 1;           /* deduct codes from patterns left */
  200.           xp = c + k;
  201.           if (j < z)
  202.             while (++j < z)     /* try smaller tables up to z bits */
  203.             {
  204.               if ((f <<= 1) <= *++xp)
  205.                 break;          /* enough codes to use up j bits */
  206.               f -= *xp;         /* else deduct codes from patterns */
  207.             }
  208.         }
  209.         z = 1 << j;             /* table entries for j-bit table */
  210.         /* allocate new table */
  211.         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
  212.           return Z_DATA_ERROR;  /* overflow of MANY */
  213.         u[h] = q = hp + *hn;
  214.         *hn += z;
  215.         /* connect to last table, if there is one */
  216.         if (h)
  217.         {
  218.           x[h] = i;             /* save pattern for backing up */
  219.           r.bits = (Byte)l;     /* bits to dump before this table */
  220.           r.exop = (Byte)j;     /* bits in this table */
  221.           j = i >> (w - l);
  222.           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
  223.           u[h-1][j] = r;        /* connect to last table */
  224.         }
  225.         else
  226.           *t = q;               /* first table is returned result */
  227.       }
  228.       /* set up table entry in r */
  229.       r.bits = (Byte)(k - w);
  230.       if (p >= v + n)
  231.         r.exop = 128 + 64;      /* out of values--invalid code */
  232.       else if (*p < s)
  233.       {
  234.         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
  235.         r.base = *p++;          /* simple code is just the value */
  236.       }
  237.       else
  238.       {
  239.         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
  240.         r.base = d[*p++ - s];
  241.       }
  242.       /* fill code-like entries with r */
  243.       f = 1 << (k - w);
  244.       for (j = i >> w; j < z; j += f)
  245.         q[j] = r;
  246.       /* backwards increment the k-bit code i */
  247.       for (j = 1 << (k - 1); i & j; j >>= 1)
  248.         i ^= j;
  249.       i ^= j;
  250.       /* backup over finished tables */
  251.       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
  252.       while ((i & mask) != x[h])
  253.       {
  254.         h--;                    /* don't need to update q */
  255.         w -= l;
  256.         mask = (1 << w) - 1;
  257.       }
  258.     }
  259.   }
  260.   /* Return Z_BUF_ERROR if we were given an incomplete table */
  261.   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
  262. }
  263. int inflate_trees_bits(c, bb, tb, hp, z)
  264. uIntf *c;               /* 19 code lengths */
  265. uIntf *bb;              /* bits tree desired/actual depth */
  266. inflate_huft * FAR *tb; /* bits tree result */
  267. inflate_huft *hp;       /* space for trees */
  268. z_streamp z;            /* for messages */
  269. {
  270.   int r;
  271.   uInt hn = 0;          /* hufts used in space */
  272.   uIntf *v;             /* work area for huft_build */
  273.   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
  274.     return Z_MEM_ERROR;
  275.   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
  276.                  tb, bb, hp, &hn, v);
  277.   if (r == Z_DATA_ERROR)
  278.     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
  279.   else if (r == Z_BUF_ERROR || *bb == 0)
  280.   {
  281.     z->msg = (char*)"incomplete dynamic bit lengths tree";
  282.     r = Z_DATA_ERROR;
  283.   }
  284.   ZFREE(z, v);
  285.   return r;
  286. }
  287. int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
  288. uInt nl;                /* number of literal/length codes */
  289. uInt nd;                /* number of distance codes */
  290. uIntf *c;               /* that many (total) code lengths */
  291. uIntf *bl;              /* literal desired/actual bit depth */
  292. uIntf *bd;              /* distance desired/actual bit depth */
  293. inflate_huft * FAR *tl; /* literal/length tree result */
  294. inflate_huft * FAR *td; /* distance tree result */
  295. inflate_huft *hp;       /* space for trees */
  296. z_streamp z;            /* for messages */
  297. {
  298.   int r;
  299.   uInt hn = 0;          /* hufts used in space */
  300.   uIntf *v;             /* work area for huft_build */
  301.   /* allocate work area */
  302.   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
  303.     return Z_MEM_ERROR;
  304.   /* build literal/length tree */
  305.   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
  306.   if (r != Z_OK || *bl == 0)
  307.   {
  308.     if (r == Z_DATA_ERROR)
  309.       z->msg = (char*)"oversubscribed literal/length tree";
  310.     else if (r != Z_MEM_ERROR)
  311.     {
  312.       z->msg = (char*)"incomplete literal/length tree";
  313.       r = Z_DATA_ERROR;
  314.     }
  315.     ZFREE(z, v);
  316.     return r;
  317.   }
  318.   /* build distance tree */
  319.   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
  320.   if (r != Z_OK || (*bd == 0 && nl > 257))
  321.   {
  322.     if (r == Z_DATA_ERROR)
  323.       z->msg = (char*)"oversubscribed distance tree";
  324.     else if (r == Z_BUF_ERROR) {
  325. #ifdef PKZIP_BUG_WORKAROUND
  326.       r = Z_OK;
  327.     }
  328. #else
  329.       z->msg = (char*)"incomplete distance tree";
  330.       r = Z_DATA_ERROR;
  331.     }
  332.     else if (r != Z_MEM_ERROR)
  333.     {
  334.       z->msg = (char*)"empty distance tree with lengths";
  335.       r = Z_DATA_ERROR;
  336.     }
  337.     ZFREE(z, v);
  338.     return r;
  339. #endif
  340.   }
  341.   /* done */
  342.   ZFREE(z, v);
  343.   return Z_OK;
  344. }
  345. /* build fixed tables only once--keep them here */
  346. #ifdef BUILDFIXED
  347. local int fixed_built = 0;
  348. #define FIXEDH 544      /* number of hufts used by fixed tables */
  349. local inflate_huft fixed_mem[FIXEDH];
  350. local uInt fixed_bl;
  351. local uInt fixed_bd;
  352. local inflate_huft *fixed_tl;
  353. local inflate_huft *fixed_td;
  354. #else
  355. #include "inffixed.h"
  356. #endif
  357. int inflate_trees_fixed(bl, bd, tl, td, z)
  358. uIntf *bl;               /* literal desired/actual bit depth */
  359. uIntf *bd;               /* distance desired/actual bit depth */
  360. inflate_huft * FAR *tl;  /* literal/length tree result */
  361. inflate_huft * FAR *td;  /* distance tree result */
  362. z_streamp z;             /* for memory allocation */
  363. {
  364. #ifdef BUILDFIXED
  365.   /* build fixed tables if not already */
  366.   if (!fixed_built)
  367.   {
  368.     int k;              /* temporary variable */
  369.     uInt f = 0;         /* number of hufts used in fixed_mem */
  370.     uIntf *c;           /* length list for huft_build */
  371.     uIntf *v;           /* work area for huft_build */
  372.     /* allocate memory */
  373.     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
  374.       return Z_MEM_ERROR;
  375.     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
  376.     {
  377.       ZFREE(z, c);
  378.       return Z_MEM_ERROR;
  379.     }
  380.     /* literal table */
  381.     for (k = 0; k < 144; k++)
  382.       c[k] = 8;
  383.     for (; k < 256; k++)
  384.       c[k] = 9;
  385.     for (; k < 280; k++)
  386.       c[k] = 7;
  387.     for (; k < 288; k++)
  388.       c[k] = 8;
  389.     fixed_bl = 9;
  390.     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
  391.                fixed_mem, &f, v);
  392.     /* distance table */
  393.     for (k = 0; k < 30; k++)
  394.       c[k] = 5;
  395.     fixed_bd = 5;
  396.     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
  397.                fixed_mem, &f, v);
  398.     /* done */
  399.     ZFREE(z, v);
  400.     ZFREE(z, c);
  401.     fixed_built = 1;
  402.   }
  403. #endif
  404.   *bl = fixed_bl;
  405.   *bd = fixed_bd;
  406.   *tl = fixed_tl;
  407.   *td = fixed_td;
  408.   return Z_OK;
  409. }