AlN DFT.pdf
文件大小: 3640k
源码售价: 10 个金币 积分规则     积分充值
资源说明:Aluminum nitride (AlN) is used extensively in the semiconductor industry as a high-thermal-conductivity insulator, but its manufacture is encumbered by a tendency to degrade in the presence of water. The propensity for AlN to hydrolyze has led to its consideration as a redox material for solar thermochemical ammonia (NH3) synthesis applications where AlN would be intentionally hydrolyzed to produce NH3 and aluminum oxide (Al2O3), which could be subsequently reduced in nitrogen (N2) to reform AlN and reinitiate the NH 3 synthesis cycle. No quantitative, atomistic mechanism by which AlN, and more generally, metal nitrides react with water to become oxidized and generate NH3 yet exists. In this work, we used density-functional theory (DFT) to examine the reaction mechanisms of the initial stages of AlN hydrolysis, which include: water adsorption, hydroxyl-mediated proton diffusion to form NH3, and NH3 desorption. We found activation barriers (Ea) for hydrolysis of 330 and 359 kJ/mol for the cases of minimal adsorbed water and additional adsorbed water, respectively, corroborating the high observed temperatures for the onset of steam AlN hydrolysis. We predict AlN hydrolysis to be kinetically limited by the dissociation of strong Al−N bonds required to accumulate protons on surface N atoms to form NH3.
本源码包内暂不包含可直接显示的源代码文件,请下载源码包。