SU(5)×T13纹理中的三重最大混合
文件大小: 610k
源码售价: 10 个金币 积分规则     积分充值
资源说明:我们将最近提出的用于非对称纹理的SU(5)×T13模型扩展到向上的夸克和跷跷板扇区。 分层的夸克夸克质量是由高维算子生成的,这些维算子涉及家庭-单数希格斯,规范-单数家庭和矢量样信使。 复数-三倍最大跷跷板混合源于最少数量的家庭的真空结构,导致跷跷板公式的Yukawa和Majorana矩阵之间对齐。 引入四个右旋中微子,可以得到轻中微子质量的正常排序,其中mν1= 27.6 meV,mν2= 28.9 meV,mν3= 57.8 meV。 它们的总和几乎使普朗克的宇宙学上限(120 meV)饱和。 右旋中微子质量用两个参数表示,用于特定的家庭真空准直选择。 我们预测CP Jarlskog-Greenberg不变量为| J | = 0.028,与当前的粒子数据组(PDG)估计一致,而Majorana不变量| I1 | = 0.106和| I2 | = 0.011。 模型参数的符号歧义性导致不变质量参数|mββ|的两种可能性:13.02或25.21 meV,均在最严格的实验上限(61–165 meV)的数量级内。
本源码包内暂不包含可直接显示的源代码文件,请下载源码包。