- Visual C++源码
- Visual Basic源码
- C++ Builder源码
- Java源码
- Delphi源码
- C/C++源码
- PHP源码
- Perl源码
- Python源码
- Asm源码
- Pascal源码
- Borland C++源码
- Others源码
- SQL源码
- VBScript源码
- JavaScript源码
- ASP/ASPX源码
- C#源码
- Flash/ActionScript源码
- matlab源码
- PowerBuilder源码
- LabView源码
- Flex源码
- MathCAD源码
- VBA源码
- IDL源码
- Lisp/Scheme源码
- VHDL源码
- Objective-C源码
- Fortran源码
- tcl/tk源码
- QT源码
cjpeg.txt
资源名称:cjpeg.rar [点击查看]
上传用户:wangchao
上传日期:2021-02-19
资源大小:9k
文件大小:31k
源码类别:
压缩解压
开发平台:
C++ Builder
- #ifndef __JPEGDEC_H__
- #define __JPEGDEC_H__
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #define BYTE unsigned char
- #define WORD unsigned short int
- #define DWORD unsigned int
- #define SDWORD signed int
- #define SBYTE signed char
- #define SWORD signed short int
- int load_JPEG_header(FILE *fp, DWORD *X_image, DWORD *Y_image);
- void decode_JPEG_image();
- int get_JPEG_buffer(WORD X_image,WORD Y_image, BYTE **address_dest_buffer);
- #endif
- #include <conio.h>
- #include <time.h>
- char *FileName="image.jpg";
- extern char error_string[90];
- typedef struct s_BM_header {
- WORD BMP_id ; // 'B''M'
- DWORD size; // size in bytes of the BMP file
- DWORD zero_res; // 0
- DWORD offbits; // 54
- DWORD biSize; // 0x28
- DWORD Width; // X
- DWORD Height; // Y
- WORD biPlanes; // 1
- WORD biBitCount ; // 24
- DWORD biCompression; // 0 = BI_RGB
- DWORD biSizeImage; // 0
- DWORD biXPelsPerMeter; // 0xB40
- DWORD biYPelsPerMeter; // 0xB40
- DWORD biClrUsed; //0
- DWORD biClrImportant; //0
- } BM_header;
- typedef struct s_RGB {
- BYTE B;
- BYTE G;
- BYTE R;
- } RGB;
- void exitmessage(char *message)
- {
- printf("%sn",message);exit(0);
- }
- void write_buf_to_BMP(BYTE *im_buffer, WORD X_bitmap, WORD Y_bitmap, char *BMPname)
- {
- SWORD x,y;
- RGB *pixel;
- BM_header BH;
- FILE *fp_bitmap;
- DWORD im_loc_bytes;
- BYTE nr_fillingbytes, i;
- BYTE zero_byte=0;
- fp_bitmap=fopen(BMPname,"wb");
- if (fp_bitmap==NULL) exitmessage("File cannot be created");
- if (X_bitmap%4!=0) nr_fillingbytes=4-((X_bitmap*3L)%4);
- else nr_fillingbytes=0;
- BH.BMP_id = 'M'*256+'B'; fwrite(&BH.BMP_id,2,1,fp_bitmap);
- BH.size=54+Y_bitmap*(X_bitmap*3+nr_fillingbytes);fwrite(&BH.size,4,1,fp_bitmap);
- BH.zero_res = 0; fwrite(&BH.zero_res,4,1,fp_bitmap);
- BH.offbits = 54; fwrite(&BH.offbits,4,1,fp_bitmap);
- BH.biSize = 0x28; fwrite(&BH.biSize,4,1,fp_bitmap);
- BH.Width = X_bitmap; fwrite(&BH.Width,4,1,fp_bitmap);
- BH.Height = Y_bitmap; fwrite(&BH.Height,4,1,fp_bitmap);
- BH.biPlanes = 1; fwrite(&BH.biPlanes,2,1,fp_bitmap);
- BH.biBitCount = 24; fwrite(&BH.biBitCount,2,1,fp_bitmap);
- BH.biCompression = 0; fwrite(&BH.biCompression,4,1,fp_bitmap);
- BH.biSizeImage = 0; fwrite(&BH.biSizeImage,4,1,fp_bitmap);
- BH.biXPelsPerMeter = 0xB40; fwrite(&BH.biXPelsPerMeter,4,1,fp_bitmap);
- BH.biYPelsPerMeter = 0xB40; fwrite(&BH.biYPelsPerMeter,4,1,fp_bitmap);
- BH.biClrUsed = 0; fwrite(&BH.biClrUsed,4,1,fp_bitmap);
- BH.biClrImportant = 0; fwrite(&BH.biClrImportant,4,1,fp_bitmap);
- printf("Writing bitmap ...n");
- im_loc_bytes=(DWORD)im_buffer+((DWORD)Y_bitmap-1)*X_bitmap*4;
- for (y=0;y<Y_bitmap;y++)
- {
- for (x=0;x<X_bitmap;x++)
- {
- pixel=(RGB *)im_loc_bytes;
- fwrite(pixel, 3, 1, fp_bitmap);
- im_loc_bytes+=4;
- }
- for (i=0;i<nr_fillingbytes;i++)
- fwrite(&zero_byte,1,1,fp_bitmap);
- im_loc_bytes-=2L*X_bitmap*4;
- }
- printf("Done.n");
- fclose(fp_bitmap);
- }
- // Used markers:
- #define SOI 0xD8
- #define EOI 0xD9
- #define APP0 0xE0
- #define SOF 0xC0
- #define DQT 0xDB
- #define DHT 0xC4
- #define SOS 0xDA
- #define DRI 0xDD
- #define COM 0xFE
- char error_string[90];
- #define exit_func(err) { strcpy(error_string, err); return 0;}
- static BYTE *buf; // the buffer we use for storing the entire JPG file
- static BYTE bp; //current byte
- static WORD wp; //current word
- static DWORD byte_pos; // current byte position
- #define BYTE_p(i) bp=buf[(i)++]
- #define WORD_p(i) wp=(((WORD)(buf[(i)]))<<8) + buf[(i)+1]; (i)+=2
- // WORD X_image_size,Y_image_size; // X,Y sizes of the image
- static WORD X_round,Y_round; // The dimensions rounded to multiple of Hmax*8 (X_round)
- // and Ymax*8 (Y_round)
- static BYTE *im_buffer; // RGBA image buffer
- static DWORD X_image_bytes; // size in bytes of 1 line of the image = X_round * 4
- static DWORD y_inc_value ; // 32*X_round; // used by decode_MCU_1x2,2x1,2x2
- BYTE YH,YV,CbH,CbV,CrH,CrV; // sampling factors (horizontal and vertical) for Y,Cb,Cr
- static WORD Hmax,Vmax;
- static BYTE zigzag[64]={ 0, 1, 5, 6,14,15,27,28,
- 2, 4, 7,13,16,26,29,42,
- 3, 8,12,17,25,30,41,43,
- 9,11,18,24,31,40,44,53,
- 10,19,23,32,39,45,52,54,
- 20,22,33,38,46,51,55,60,
- 21,34,37,47,50,56,59,61,
- 35,36,48,49,57,58,62,63 };
- typedef struct {
- BYTE Length[17]; // k =1-16 ; L[k] indicates the number of Huffman codes of length k
- WORD minor_code[17]; // indicates the value of the smallest Huffman code of length k
- WORD major_code[17]; // similar, but the highest code
- BYTE V[65536]; // V[k][j] = Value associated to the j-th Huffman code of length k
- // High nibble = nr of previous 0 coefficients
- // Low nibble = size (in bits) of the coefficient which will be taken from the data stream
- } Huffman_table;
- static float *QT[4]; // quantization tables, no more than 4 quantization tables (QT[0..3])
- static Huffman_table HTDC[4]; //DC huffman tables , no more than 4 (0..3)
- static Huffman_table HTAC[4]; //AC huffman tables (0..3)
- static BYTE YQ_nr,CbQ_nr,CrQ_nr; // quantization table number for Y, Cb, Cr
- static BYTE YDC_nr,CbDC_nr,CrDC_nr; // DC Huffman table number for Y,Cb, Cr
- static BYTE YAC_nr,CbAC_nr,CrAC_nr; // AC Huffman table number for Y,Cb, Cr
- static BYTE Restart_markers; // if 1 => Restart markers on , 0 => no restart markers
- static WORD MCU_restart; //Restart markers appears every MCU_restart MCU blocks
- typedef void (*decode_MCU_func)(DWORD);
- static SWORD DCY, DCCb, DCCr; // Coeficientii DC pentru Y,Cb,Cr
- static SWORD DCT_coeff[64]; // Current DCT_coefficients
- static BYTE Y[64],Cb[64],Cr[64]; // Y, Cb, Cr of the current 8x8 block for the 1x1 case
- static BYTE Y_1[64],Y_2[64],Y_3[64],Y_4[64];
- static BYTE tab_1[64],tab_2[64],tab_3[64],tab_4[64]; // tabelele de supraesantionare pt cele 4 blocuri
- static SWORD Cr_tab[256],Cb_tab[256]; // Precalculated Cr, Cb tables
- static SWORD Cr_Cb_green_tab[65536];
- // Initial conditions:
- // byte_pos = start position in the Huffman coded segment
- // WORD_get(w1); WORD_get(w2);wordval=w1;
- static BYTE d_k=0; // Bit displacement in memory, relative to the offset of w1
- // it's always <16
- static WORD w1,w2; // w1 = First word in memory; w2 = Second word
- static DWORD wordval ; // the actual used value in Huffman decoding.
- static DWORD mask[17];
- static SWORD neg_pow2[17]={0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047,-4095,-8191,-16383,-32767};
- static DWORD start_neg_pow2=(DWORD)neg_pow2;
- static int shift_temp;
- #define RIGHT_SHIFT(x,shft)
- ((shift_temp = (x)) < 0 ?
- (shift_temp >> (shft)) | ((~(0L)) << (32-(shft))) :
- (shift_temp >> (shft)))
- #define DESCALE(x,n) RIGHT_SHIFT((x) + (1L << ((n)-1)), n)
- #define RANGE_MASK 1023L
- static BYTE *rlimit_table;
- void prepare_range_limit_table()
- /* Allocate and fill in the sample_range_limit table */
- {
- int j;
- rlimit_table = (BYTE *)malloc(5 * 256L + 128) ;
- /* First segment of "simple" table: limit[x] = 0 for x < 0 */
- memset((void *)rlimit_table,0,256);
- rlimit_table += 256; /* allow negative subscripts of simple table */
- /* Main part of "simple" table: limit[x] = x */
- for (j = 0; j < 256; j++) rlimit_table[j] = j;
- /* End of simple table, rest of first half of post-IDCT table */
- for (j = 256; j < 640; j++) rlimit_table[j] = 255;
- /* Second half of post-IDCT table */
- memset((void *)(rlimit_table + 640),0,384);
- for (j = 0; j < 128 ; j++) rlimit_table[j+1024] = j;
- }
- #ifdef _MSC_VER
- WORD lookKbits(BYTE k)
- {
- _asm {
- mov dl, k
- mov cl, 16
- sub cl, dl
- mov eax, [wordval]
- shr eax, cl
- }
- }
- WORD WORD_hi_lo(BYTE byte_high,BYTE byte_low)
- {
- _asm {
- mov ah,byte_high
- mov al,byte_low
- }
- }
- SWORD get_svalue(BYTE k)
- // k>0 always
- // Takes k bits out of the BIT stream (wordval), and makes them a signed value
- {
- _asm {
- xor ecx, ecx
- mov cl,k
- mov eax,[wordval]
- shl eax,cl
- shr eax, 16
- dec cl
- bt eax,ecx
- jc end_macro
- signed_value:inc cl
- mov ebx,[start_neg_pow2]
- add ax,word ptr [ebx+ecx*2]
- end_macro:
- }
- }
- #endif
- #ifdef __WATCOMC__
- WORD lookKbits(BYTE k);
- #pragma aux lookKbits=
- "mov eax,[wordval]"
- "mov cl, 16"
- "sub cl, dl"
- "shr eax, cl"
- parm [dl]
- value [ax]
- modify [eax cl];
- WORD WORD_hi_lo(BYTE byte_high,BYTE BYTE_low);
- #pragma aux WORD_hi_lo=
- parm [ah] [al]
- value [ax]
- modify [ax];
- SWORD get_svalue(BYTE k);
- // k>0 always
- // Takes k bits out of the BIT stream (wordval), and makes them a signed value
- #pragma aux get_svalue=
- "xor ecx, ecx"
- "mov cl, al"
- "mov eax,[wordval]"
- "shl eax, cl"
- "shr eax, 16"
- "dec cl"
- "bt eax,ecx"
- "jc end_macro"
- "signed_value:inc cl"
- "mov ebx,[start_neg_pow2]"
- "add ax,word ptr [ebx+ecx*2]"
- "end_macro:"
- parm [al]
- modify [eax ebx ecx]
- value [ax];
- #endif
- void skipKbits(BYTE k)
- {
- BYTE b_high,b_low;
- d_k+=k;
- if (d_k>=16) { d_k-=16;
- w1=w2;
- // Get the next word in w2
- BYTE_p(byte_pos);
- if (bp!=0xFF) b_high=bp;
- else {
- if (buf[byte_pos]==0) byte_pos++; //skip 00
- else byte_pos--; // stop byte_pos pe restart marker
- b_high=0xFF;
- }
- BYTE_p(byte_pos);
- if (bp!=0xFF) b_low=bp;
- else {
- if (buf[byte_pos]==0) byte_pos++; //skip 00
- else byte_pos--; // stop byte_pos pe restart marker
- b_low=0xFF;
- }
- w2=WORD_hi_lo(b_high,b_low);
- }
- wordval = ((DWORD)(w1)<<16) + w2;
- wordval <<= d_k;
- wordval >>= 16;
- }
- SWORD getKbits(BYTE k)
- {
- SWORD signed_wordvalue;
- signed_wordvalue=get_svalue(k);
- skipKbits(k);
- return signed_wordvalue;
- }
- void calculate_mask()
- {
- BYTE k;
- DWORD tmpdv;
- for (k=0;k<=16;k++) { tmpdv=0x10000;mask[k]=(tmpdv>>k)-1;} //precalculated bit mask
- }
- void init_QT()
- {
- BYTE i;
- for (i=0;i<=3;i++) QT[i]=(float *)malloc(sizeof(float)*64);
- }
- void load_quant_table(float *quant_table)
- {
- float scalefactor[8]={1.0f, 1.387039845f, 1.306562965f, 1.175875602f,
- 1.0f, 0.785694958f, 0.541196100f, 0.275899379f};
- BYTE j,row,col;
- // Load quantization coefficients from JPG file, scale them for DCT and reorder
- // from zig-zag order
- for (j=0;j<=63;j++) quant_table[j]=buf[byte_pos+zigzag[j]];
- j=0;
- for (row=0;row<=7;row++)
- for (col=0;col<=7;col++) {
- quant_table[j]*=scalefactor[row]*scalefactor[col];
- j++;
- }
- byte_pos+=64;
- }
- void load_Huffman_table(Huffman_table *HT)
- {
- BYTE k,j;
- DWORD code;
- for (j=1;j<=16;j++) {
- BYTE_p(byte_pos);
- HT->Length[j]=bp;
- }
- for (k=1;k<=16;k++)
- for (j=0;j<HT->Length[k];j++) {
- BYTE_p(byte_pos);
- HT->V[WORD_hi_lo(k,j)]=bp;
- }
- code=0;
- for (k=1;k<=16;k++) {
- HT->minor_code[k] = (WORD)code;
- for (j=1;j<=HT->Length[k];j++) code++;
- HT->major_code[k]=(WORD)(code-1);
- code*=2;
- if (HT->Length[k]==0) {
- HT->minor_code[k]=0xFFFF;
- HT->major_code[k]=0;
- }
- }
- }
- void process_Huffman_data_unit(BYTE DC_nr, BYTE AC_nr,SWORD *previous_DC)
- {
- // Process one data unit. A data unit = 64 DCT coefficients
- // Data is decompressed by Huffman decoding, then the array is dezigzag-ed
- // The result is a 64 DCT coefficients array: DCT_coeff
- BYTE nr,k,j,EOB_found;
- register WORD tmp_Hcode;
- BYTE size_val,count_0;
- WORD *min_code,*maj_code; // min_code[k]=minimum code of length k, maj_code[k]=similar but maximum
- WORD *max_val, *min_val;
- BYTE *huff_values;
- SWORD DCT_tcoeff[64];
- BYTE byte_temp;
- // Start Huffman decoding
- // First the DC coefficient decoding
- min_code=HTDC[DC_nr].minor_code;
- maj_code=HTDC[DC_nr].major_code;
- huff_values=HTDC[DC_nr].V;
- for (nr = 0; nr < 64 ; nr++) DCT_tcoeff[nr] = 0; //Initialize DCT_tcoeff
- nr=0;// DC coefficient
- min_val = &min_code[1]; max_val = &maj_code[1];
- for (k=1;k<=16;k++) {
- tmp_Hcode=lookKbits(k);
- // max_val = &maj_code[k]; min_val = &min_code[k];
- if ( (tmp_Hcode<=*max_val)&&(tmp_Hcode>=*min_val) ) { //Found a valid Huffman code
- skipKbits(k);
- size_val=huff_values[WORD_hi_lo(k,(BYTE)(tmp_Hcode-*min_val))];
- if (size_val==0) DCT_tcoeff[0]=*previous_DC;
- else {
- DCT_tcoeff[0]=*previous_DC+getKbits(size_val);
- *previous_DC=DCT_tcoeff[0];
- }
- break;
- }
- min_val++; max_val++;
- }
- // Second, AC coefficient decoding
- min_code=HTAC[AC_nr].minor_code;
- maj_code=HTAC[AC_nr].major_code;
- huff_values=HTAC[AC_nr].V;
- nr=1; // AC coefficient
- EOB_found=0;
- while ( (nr<=63)&&(!EOB_found) )
- {
- max_val = &maj_code[1]; min_val =&min_code[1];
- for (k=1;k<=16;k++)
- {
- tmp_Hcode=lookKbits(k);
- // max_val = &maj_code[k]; &min_val = min_code[k];
- if ( (tmp_Hcode<=*max_val)&&(tmp_Hcode>=*min_val) )
- {
- skipKbits(k);
- byte_temp=huff_values[WORD_hi_lo(k,(BYTE)(tmp_Hcode-*min_val))];
- size_val=byte_temp&0xF;
- count_0=byte_temp>>4;
- if (size_val==0) {if (count_0==0) EOB_found=1;
- else if (count_0==0xF) nr+=16; //skip 16 zeroes
- }
- else
- {
- nr+=count_0; //skip count_0 zeroes
- DCT_tcoeff[nr++]=getKbits(size_val);
- }
- break;
- }
- min_val++; max_val++;
- }
- if (k>16) nr++; // This should not occur
- }
- for (j=0;j<=63;j++) DCT_coeff[j]=DCT_tcoeff[zigzag[j]]; // Et, voila ... DCT_coeff
- }
- void IDCT_transform(SWORD *incoeff,BYTE *outcoeff,BYTE Q_nr)
- // Fast float IDCT transform
- {
- BYTE x;
- SBYTE y;
- SWORD *inptr;
- BYTE *outptr;
- float workspace[64];
- float *wsptr;//Workspace pointer
- float *quantptr; // Quantization table pointer
- float dcval;
- float tmp0,tmp1,tmp2,tmp3,tmp4,tmp5,tmp6,tmp7;
- float tmp10,tmp11,tmp12,tmp13;
- float z5,z10,z11,z12,z13;
- BYTE *range_limit=rlimit_table+128;
- // Pass 1: process COLUMNS from input and store into work array.
- wsptr=workspace;
- inptr=incoeff;
- quantptr=QT[Q_nr];
- for (y=0;y<=7;y++)
- {
- if( (inptr[8]|inptr[16]|inptr[24]|inptr[32]|inptr[40]|inptr[48]|inptr[56])==0)
- {
- // AC terms all zero (in a column)
- dcval=inptr[0]*quantptr[0];
- wsptr[0] = dcval;
- wsptr[8] = dcval;
- wsptr[16] = dcval;
- wsptr[24] = dcval;
- wsptr[32] = dcval;
- wsptr[40] = dcval;
- wsptr[48] = dcval;
- wsptr[56] = dcval;
- inptr++;quantptr++;wsptr++;//advance pointers to next column
- continue ;
- }
- //Even part
- tmp0 = inptr[0] *quantptr[0];
- tmp1 = inptr[16]*quantptr[16];
- tmp2 = inptr[32]*quantptr[32];
- tmp3 = inptr[48]*quantptr[48];
- tmp10 = tmp0 + tmp2;// phase 3
- tmp11 = tmp0 - tmp2;
- tmp13 = tmp1 + tmp3;// phases 5-3
- tmp12 = (tmp1 - tmp3) * 1.414213562f - tmp13; // 2*c4
- tmp0 = tmp10 + tmp13;// phase 2
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
- // Odd part
- tmp4 = inptr[8] *quantptr[8];
- tmp5 = inptr[24]*quantptr[24];
- tmp6 = inptr[40]*quantptr[40];
- tmp7 = inptr[56]*quantptr[56];
- z13 = tmp6 + tmp5;// phase 6
- z10 = tmp6 - tmp5;
- z11 = tmp4 + tmp7;
- z12 = tmp4 - tmp7;
- tmp7 = z11 + z13;// phase 5
- tmp11= (z11 - z13) * 1.414213562f; // 2*c4
- z5 = (z10 + z12) * 1.847759065f; // 2*c2
- tmp10 = 1.082392200f * z12 - z5; // 2*(c2-c6)
- tmp12 = -2.613125930f * z10 + z5;// -2*(c2+c6)
- tmp6 = tmp12 - tmp7;// phase 2
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
- wsptr[0] = tmp0 + tmp7;
- wsptr[56] = tmp0 - tmp7;
- wsptr[8] = tmp1 + tmp6;
- wsptr[48] = tmp1 - tmp6;
- wsptr[16] = tmp2 + tmp5;
- wsptr[40] = tmp2 - tmp5;
- wsptr[32] = tmp3 + tmp4;
- wsptr[24] = tmp3 - tmp4;
- inptr++;
- quantptr++;
- wsptr++;//advance pointers to the next column
- }
- // Pass 2: process ROWS from work array, store into output array.
- // Note that we must descale the results by a factor of 8 = 2^3
- outptr=outcoeff;
- wsptr=workspace;
- for (x=0;x<=7;x++)
- {
- // Even part
- tmp10 = wsptr[0] + wsptr[4];
- tmp11 = wsptr[0] - wsptr[4];
- tmp13 = wsptr[2] + wsptr[6];
- tmp12 =(wsptr[2] - wsptr[6]) * 1.414213562f - tmp13;
- tmp0 = tmp10 + tmp13;
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
- // Odd part
- z13 = wsptr[5] + wsptr[3];
- z10 = wsptr[5] - wsptr[3];
- z11 = wsptr[1] + wsptr[7];
- z12 = wsptr[1] - wsptr[7];
- tmp7 = z11 + z13;
- tmp11= (z11 - z13) * 1.414213562f;
- z5 = (z10 + z12) * 1.847759065f; // 2*c2
- tmp10 = 1.082392200f * z12 - z5; // 2*(c2-c6)
- tmp12 = -2.613125930f * z10 + z5; // -2*(c2+c6)
- tmp6 = tmp12 - tmp7;
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
- // Final output stage: scale down by a factor of 8
- outptr[0] = range_limit[(DESCALE((int) (tmp0 + tmp7), 3)) & 1023L];
- outptr[7] = range_limit[(DESCALE((int) (tmp0 - tmp7), 3)) & 1023L];
- outptr[1] = range_limit[(DESCALE((int) (tmp1 + tmp6), 3)) & 1023L];
- outptr[6] = range_limit[(DESCALE((int) (tmp1 - tmp6), 3)) & 1023L];
- outptr[2] = range_limit[(DESCALE((int) (tmp2 + tmp5), 3)) & 1023L];
- outptr[5] = range_limit[(DESCALE((int) (tmp2 - tmp5), 3)) & 1023L];
- outptr[4] = range_limit[(DESCALE((int) (tmp3 + tmp4), 3)) & 1023L];
- outptr[3] = range_limit[(DESCALE((int) (tmp3 - tmp4), 3)) & 1023L];
- wsptr+=8;//advance pointer to the next row
- outptr+=8;
- }
- }
- void precalculate_Cr_Cb_tables()
- {
- WORD k;
- WORD Cr_v,Cb_v;
- for (k=0;k<=255;k++) Cr_tab[k]=(SWORD)((k-128.0)*1.402);
- for (k=0;k<=255;k++) Cb_tab[k]=(SWORD)((k-128.0)*1.772);
- for (Cr_v=0;Cr_v<=255;Cr_v++)
- for (Cb_v=0;Cb_v<=255;Cb_v++)
- Cr_Cb_green_tab[((WORD)(Cr_v)<<8)+Cb_v]=(int)(-0.34414*(Cb_v-128.0)-0.71414*(Cr_v-128.0));
- }
- void convert_8x8_YCbCr_to_RGB(BYTE *Y, BYTE *Cb, BYTE *Cr, DWORD im_loc, DWORD X_image_bytes, BYTE *im_buffer)
- // Functia (ca optimizare) poate fi apelata si fara parametrii Y,Cb,Cr
- // Stim ca va fi apelata doar in cazul 1x1
- {
- DWORD x,y;
- BYTE im_nr;
- BYTE *Y_val = Y, *Cb_val = Cb, *Cr_val = Cr;
- BYTE *ibuffer = im_buffer + im_loc;
- for (y=0;y<8;y++)
- {
- im_nr=0;
- for (x=0;x<8;x++)
- {
- ibuffer[im_nr++] = rlimit_table[*Y_val + Cb_tab[*Cb_val]]; //B
- ibuffer[im_nr++] = rlimit_table[*Y_val + Cr_Cb_green_tab[WORD_hi_lo(*Cr_val,*Cb_val)]]; //G
- ibuffer[im_nr++] = rlimit_table[*Y_val + Cr_tab[*Cr_val]]; // R
- /*
- // Monochrome display
- im_buffer[im_nr++] = *Y_val;
- im_buffer[im_nr++] = *Y_val;
- im_buffer[im_nr++] = *Y_val;
- */
- Y_val++; Cb_val++; Cr_val++; im_nr++;
- }
- ibuffer+=X_image_bytes;
- }
- }
- void convert_8x8_YCbCr_to_RGB_tab(BYTE *Y, BYTE *Cb, BYTE *Cr, BYTE *tab, DWORD im_loc, DWORD X_image_bytes, BYTE *im_buffer)
- // Functia (ca optimizare) poate fi apelata si fara parametrii Cb,Cr
- {
- DWORD x,y;
- BYTE nr, im_nr;
- BYTE Y_val,Cb_val,Cr_val;
- BYTE *ibuffer = im_buffer + im_loc;
- nr=0;
- for (y=0;y<8;y++)
- {
- im_nr=0;
- for (x=0;x<8;x++)
- {
- Y_val=Y[nr];
- Cb_val=Cb[tab[nr]]; Cr_val=Cr[tab[nr]]; // reindexare folosind tabelul
- // de supraesantionare precalculat
- ibuffer[im_nr++] = rlimit_table[Y_val + Cb_tab[Cb_val]]; //B
- ibuffer[im_nr++] = rlimit_table[Y_val + Cr_Cb_green_tab[WORD_hi_lo(Cr_val,Cb_val)]]; //G
- ibuffer[im_nr++] = rlimit_table[Y_val + Cr_tab[Cr_val]]; // R
- nr++; im_nr++;
- }
- ibuffer+=X_image_bytes;
- }
- }
- void calculate_tabs()
- {
- BYTE tab_temp[256];
- BYTE x,y;
- // Tabelul de supraesantionare 16x16
- for (y=0;y<16;y++)
- for (x=0;x<16;x++)
- tab_temp[y*16+x] = (y/YV)* 8 + x/YH;
- // Din el derivam tabelele corespunzatoare celor 4 blocuri de 8x8 pixeli
- for (y=0;y<8;y++)
- {
- for (x=0;x<8;x++)
- tab_1[y*8+x]=tab_temp[y*16+x];
- for (x=8;x<16;x++)
- tab_2[y*8+(x-8)]=tab_temp[y*16+x];
- }
- for (y=8;y<16;y++)
- {
- for (x=0;x<8;x++)
- tab_3[(y-8)*8+x]=tab_temp[y*16+x];
- for (x=8;x<16;x++)
- tab_4[(y-8)*8+(x-8)]=tab_temp[y*16+x];
- }
- }
- int init_JPG_decoding()
- {
- byte_pos=0;
- init_QT();
- calculate_mask();
- prepare_range_limit_table();
- precalculate_Cr_Cb_tables();
- return 1; //for future error check
- }
- DWORD filesize(FILE *fp)
- {
- DWORD pos;
- DWORD pos_cur;
- pos_cur=ftell(fp);
- fseek(fp,0,SEEK_END);
- pos=ftell(fp);
- fseek(fp,pos_cur,SEEK_SET);
- return pos;
- }
- int load_JPEG_header(FILE *fp, DWORD *X_image, DWORD *Y_image)
- {
- DWORD length_of_file;
- BYTE vers,units;
- WORD Xdensity,Ydensity,Xthumbnail,Ythumbnail;
- WORD length;
- float *qtable;
- DWORD old_byte_pos;
- Huffman_table *htable;
- DWORD j;
- BYTE precision,comp_id,nr_components;
- BYTE QT_info,HT_info;
- BYTE SOS_found,SOF_found;
- length_of_file=filesize(fp);
- buf=(BYTE *)malloc(length_of_file+4);
- if (buf==NULL) exit_func("Not enough memory for loading file");
- fread(buf,length_of_file,1,fp);
- if ((buf[0]!=0xFF)||(buf[1]!=SOI)) exit_func("Not a JPG file ?n");
- if ((buf[2]!=0xFF)||(buf[3]!=APP0)) exit_func("Invalid JPG file.");
- if ( (buf[6]!='J')||(buf[7]!='F')||(buf[8]!='I')||(buf[9]!='F')||
- (buf[10]!=0) ) exit_func("Invalid JPG file.");
- init_JPG_decoding();
- byte_pos=11;
- BYTE_p(byte_pos);vers=bp;
- if (vers!=1) exit_func("JFIF version not supported");
- BYTE_p(byte_pos); // vers_lo=bp;
- BYTE_p(byte_pos); units=bp;
- if (units!=0) //exit_func("JPG format not supported");
- ;// printf("units = %dn", units);
- WORD_p(byte_pos); Xdensity=wp; WORD_p(byte_pos); Ydensity=wp;
- if ((Xdensity!=1)||(Ydensity!=1)) //exit_func("JPG format not supported");
- ; //{printf("X density = %dn",Xdensity); printf("Y density = %dn",Ydensity);}
- BYTE_p(byte_pos);Xthumbnail=bp;BYTE_p(byte_pos);Ythumbnail=bp;
- if ((Xthumbnail!=0)||(Ythumbnail!=0))
- exit_func(" Cannot process JFIF thumbnailed filesn");
- // Start decoding process
- SOS_found=0; SOF_found=0; Restart_markers=0;
- while ((byte_pos<length_of_file)&&!SOS_found)
- {
- BYTE_p(byte_pos);
- if (bp!=0xFF) continue;
- // A marker was found
- BYTE_p(byte_pos);
- switch(bp)
- {
- case DQT: WORD_p(byte_pos); length=wp; // length of the DQT marker
- for (j=0;j<wp-2;)
- {
- old_byte_pos=byte_pos;
- BYTE_p(byte_pos); QT_info=bp;
- if ((QT_info>>4)!=0)
- exit_func("16 bit quantization table not supported");
- qtable=QT[QT_info&0xF];
- load_quant_table(qtable);
- j+=byte_pos-old_byte_pos;
- }
- break;
- case DHT: WORD_p(byte_pos); length=wp;
- for (j=0;j<wp-2;)
- {
- old_byte_pos=byte_pos;
- BYTE_p(byte_pos); HT_info=bp;
- if ((HT_info&0x10)!=0) htable=&HTAC[HT_info&0xF];
- else htable=&HTDC[HT_info&0xF];
- load_Huffman_table(htable);
- j+=byte_pos-old_byte_pos;
- }
- break;
- case COM: WORD_p(byte_pos); length=wp;
- byte_pos+=wp-2;
- break;
- case DRI: Restart_markers=1;
- WORD_p(byte_pos); length=wp; //should be = 4
- WORD_p(byte_pos); MCU_restart=wp;
- if (MCU_restart==0) Restart_markers=0;
- break;
- case SOF: WORD_p(byte_pos); length=wp; //should be = 8+3*3=17
- BYTE_p(byte_pos); precision=bp;
- if (precision!=8) exit_func("Only 8 bit precision supported");
- WORD_p(byte_pos); *Y_image=wp; WORD_p(byte_pos); *X_image=wp;
- BYTE_p(byte_pos); nr_components=bp;
- if (nr_components!=3) exit_func("Only truecolor JPGS supported");
- for (j=1;j<=3;j++)
- {
- BYTE_p(byte_pos); comp_id=bp;
- if ((comp_id==0)||(comp_id>3)) exit_func("Only YCbCr format supported");
- switch (comp_id)
- {
- case 1: // Y
- BYTE_p(byte_pos); YH=bp>>4;YV=bp&0xF;
- BYTE_p(byte_pos); YQ_nr=bp;
- break;
- case 2: // Cb
- BYTE_p(byte_pos); CbH=bp>>4;CbV=bp&0xF;
- BYTE_p(byte_pos); CbQ_nr=bp;
- break;
- case 3: // Cr
- BYTE_p(byte_pos); CrH=bp>>4;CrV=bp&0xF;
- BYTE_p(byte_pos); CrQ_nr=bp;
- break;
- }
- }
- SOF_found=1;
- break;
- case SOS: WORD_p(byte_pos); length=wp; //should be = 6+3*2=12
- BYTE_p(byte_pos); nr_components=bp;
- if (nr_components!=3) exit_func("Invalid SOS marker");
- for (j=1;j<=3;j++)
- {
- BYTE_p(byte_pos); comp_id=bp;
- if ((comp_id==0)||(comp_id>3)) exit_func("Only YCbCr format supported");
- switch (comp_id)
- {
- case 1: // Y
- BYTE_p(byte_pos); YDC_nr=bp>>4;YAC_nr=bp&0xF;
- break;
- case 2: // Cb
- BYTE_p(byte_pos); CbDC_nr=bp>>4;CbAC_nr=bp&0xF;
- break;
- case 3: // Cr
- BYTE_p(byte_pos); CrDC_nr=bp>>4;CrAC_nr=bp&0xF;
- break;
- }
- }
- BYTE_p(byte_pos); BYTE_p(byte_pos); BYTE_p(byte_pos); // Skip 3 bytes
- SOS_found=1;
- break;
- case 0xFF:
- break; // do nothing for 0xFFFF, sequence of consecutive 0xFF are for
- // filling purposes and should be ignored
- default: WORD_p(byte_pos); length=wp;
- byte_pos+=wp-2; //skip unknown marker
- break;
- }
- }
- if (!SOS_found) exit_func("Invalid JPG file. No SOS marker found.");
- if (!SOF_found) exit_func("Progressive JPEGs not supported");
- if ((CbH>YH)||(CrH>YH)) exit_func("Vertical sampling factor for Y should be >= sampling factor for Cb,Cr");
- if ((CbV>YV)||(CrV>YV)) exit_func("Horizontal sampling factor for Y should be >= sampling factor for Cb,Cr");
- if ((CbH>=2)||(CbV>=2)) exit_func("Cb sampling factors should be = 1");
- if ((CrV>=2)||(CrV>=2)) exit_func("Cr sampling factors should be = 1");
- // Restricting sampling factors for Y,Cb,Cr should give us 4 possible cases for sampling factors
- // YHxYV,CbHxCbV,CrHxCrV: 2x2,1x1,1x1; 1x2,1x1,1x1; 2x1,1x1,1x1;
- // and 1x1,1x1,1x1 = no upsampling needed
- Hmax=YH,Vmax=YV;
- if ( *X_image%(Hmax*8)==0) X_round=*X_image; // X_round = Multiple of Hmax*8
- else X_round=(*X_image/(Hmax*8)+1)*(Hmax*8);
- if ( *Y_image%(Vmax*8)==0) Y_round=*Y_image; // Y_round = Multiple of Vmax*8
- else Y_round=(*Y_image/(Vmax*8)+1)*(Vmax*8);
- im_buffer=(BYTE *)malloc(X_round*Y_round*4);
- if (im_buffer==NULL) exit_func("Not enough memory for storing the JPEG image");
- return 1;
- }
- void resync()
- // byte_pos = pozitionat pe restart marker
- {
- byte_pos+=2;
- BYTE_p(byte_pos);
- if (bp==0xFF) byte_pos++; // skip 00
- w1=WORD_hi_lo(bp, 0);
- BYTE_p(byte_pos);
- if (bp==0xFF) byte_pos++; // skip 00
- w1+=bp;
- BYTE_p(byte_pos);
- if (bp==0xFF) byte_pos++; // skip 00
- w2=WORD_hi_lo(bp, 0);
- BYTE_p(byte_pos);
- if (bp==0xFF) byte_pos++; // skip 00
- w2+=bp;
- wordval=w1; d_k=0; // Reinit bitstream decoding
- DCY=0; DCCb=0; DCCr=0; // Init DC coefficients
- }
- void decode_MCU_1x1(DWORD im_loc)
- {
- // Y
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y,YQ_nr);
- // Cb
- process_Huffman_data_unit(CbDC_nr,CbAC_nr,&DCCb);
- IDCT_transform(DCT_coeff,Cb,CbQ_nr);
- // Cr
- process_Huffman_data_unit(CrDC_nr,CrAC_nr,&DCCr);
- IDCT_transform(DCT_coeff,Cr,CrQ_nr);
- convert_8x8_YCbCr_to_RGB(Y,Cb,Cr,im_loc,X_image_bytes,im_buffer);
- }
- void decode_MCU_2x1(DWORD im_loc)
- {
- // Y
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_1,YQ_nr);
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_2,YQ_nr);
- // Cb
- process_Huffman_data_unit(CbDC_nr,CbAC_nr,&DCCb);
- IDCT_transform(DCT_coeff,Cb,CbQ_nr);
- // Cr
- process_Huffman_data_unit(CrDC_nr,CrAC_nr,&DCCr);
- IDCT_transform(DCT_coeff,Cr,CrQ_nr);
- convert_8x8_YCbCr_to_RGB_tab(Y_1,Cb,Cr,tab_1,im_loc,X_image_bytes,im_buffer);
- convert_8x8_YCbCr_to_RGB_tab(Y_2,Cb,Cr,tab_2,im_loc+32,X_image_bytes,im_buffer);
- }
- void decode_MCU_2x2(DWORD im_loc)
- {
- // Y
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_1,YQ_nr);
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_2,YQ_nr);
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_3,YQ_nr);
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_4,YQ_nr);
- // Cb
- process_Huffman_data_unit(CbDC_nr,CbAC_nr,&DCCb);
- IDCT_transform(DCT_coeff,Cb,CbQ_nr);
- // Cr
- process_Huffman_data_unit(CrDC_nr,CrAC_nr,&DCCr);
- IDCT_transform(DCT_coeff,Cr,CrQ_nr);
- convert_8x8_YCbCr_to_RGB_tab(Y_1,Cb,Cr,tab_1,im_loc,X_image_bytes,im_buffer);
- convert_8x8_YCbCr_to_RGB_tab(Y_2,Cb,Cr,tab_2,im_loc+32,X_image_bytes,im_buffer);
- convert_8x8_YCbCr_to_RGB_tab(Y_3,Cb,Cr,tab_3,im_loc+y_inc_value,X_image_bytes,im_buffer);
- convert_8x8_YCbCr_to_RGB_tab(Y_4,Cb,Cr,tab_4,im_loc+y_inc_value+32,X_image_bytes,im_buffer);
- }
- void decode_MCU_1x2(DWORD im_loc)
- {
- // Y
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_1,YQ_nr);
- process_Huffman_data_unit(YDC_nr,YAC_nr,&DCY);
- IDCT_transform(DCT_coeff,Y_2,YQ_nr);
- // Cb
- process_Huffman_data_unit(CbDC_nr,CbAC_nr,&DCCb);
- IDCT_transform(DCT_coeff,Cb,CbQ_nr);
- // Cr
- process_Huffman_data_unit(CrDC_nr,CrAC_nr,&DCCr);
- IDCT_transform(DCT_coeff,Cr,CrQ_nr);
- convert_8x8_YCbCr_to_RGB_tab(Y_1,Cb,Cr,tab_1,im_loc,X_image_bytes,im_buffer);
- convert_8x8_YCbCr_to_RGB_tab(Y_2,Cb,Cr,tab_3,im_loc+y_inc_value,X_image_bytes,im_buffer);
- }
- void decode_JPEG_image()
- {
- decode_MCU_func decode_MCU;
- WORD x_mcu_cnt,y_mcu_cnt;
- DWORD nr_mcu;
- WORD X_MCU_nr,Y_MCU_nr; // Nr de MCU-uri
- DWORD MCU_dim_x; //dimensiunea in bufferul imagine a unui MCU pe axa x
- DWORD im_loc_inc; // = 7 * X_round * 4 sau 15*X_round*4;
- DWORD im_loc; //locatia in bufferul imagine
- byte_pos-=2;
- resync();
- y_inc_value = 32*X_round;
- calculate_tabs(); // Calcul tabele de supraesantionare, tinand cont de YH si YV
- if ((YH==1)&&(YV==1)) decode_MCU=decode_MCU_1x1;
- else {
- if (YH==2)
- {
- if (YV==2) decode_MCU=decode_MCU_2x2;
- else decode_MCU=decode_MCU_2x1;
- }
- else decode_MCU=decode_MCU_1x2;
- }
- MCU_dim_x=Hmax*8*4;
- Y_MCU_nr=Y_round/(Vmax*8); // nr of MCUs on Y axis
- X_MCU_nr=X_round/(Hmax*8); // nr of MCUs on X axis
- X_image_bytes=X_round*4; im_loc_inc = (Vmax*8-1) * X_image_bytes;
- nr_mcu=0; im_loc=0; // memory location of the current MCU
- for (y_mcu_cnt=0;y_mcu_cnt<Y_MCU_nr;y_mcu_cnt++)
- {
- for (x_mcu_cnt=0;x_mcu_cnt<X_MCU_nr;x_mcu_cnt++)
- {
- decode_MCU(im_loc);
- if ((Restart_markers)&&((nr_mcu+1)%MCU_restart==0)) resync();
- nr_mcu++;
- im_loc+=MCU_dim_x;
- }
- im_loc+=im_loc_inc;
- }
- }
- int get_JPEG_buffer(WORD X_image,WORD Y_image, BYTE **address_dest_buffer)
- {
- WORD y;
- DWORD dest_loc=0;
- BYTE *src_buffer=im_buffer;
- BYTE *dest_buffer_start, *dest_buffer;
- DWORD src_bytes_per_line=X_round*4;
- DWORD dest_bytes_per_line=X_image*4;
- if ((X_round==X_image)&&(Y_round==Y_image))
- *address_dest_buffer=im_buffer;
- else
- {
- dest_buffer_start = (BYTE *)malloc(X_image*Y_image*4);
- if (dest_buffer_start==NULL) exit_func("Not enough memory for storing the JPEG image");
- dest_buffer = dest_buffer_start;
- for (y=0;y<Y_image;y++) {
- memcpy(dest_buffer,src_buffer,dest_bytes_per_line);
- src_buffer+=src_bytes_per_line;
- dest_buffer+=dest_bytes_per_line;
- }
- *address_dest_buffer=dest_buffer_start;
- free(im_buffer);
- }
- // release the buffer which contains the JPG file
- free(buf);
- return 1;
- }
- void main(int argc, char *argv[])
- {
- FILE *fp;
- DWORD X_image, Y_image;
- BYTE *our_image_buffer;
- clock_t start_time, finish_time;
- float duration;
- if (argc<=1) fp=fopen(FileName,"rb");
- else fp=fopen(argv[1],"rb");
- if (fp==NULL) exitmessage("File not found ?");
- if (!load_JPEG_header(fp,&X_image,&Y_image)) {exitmessage(error_string);return;}
- fclose(fp);
- printf(" X_image = %dn",X_image);
- printf(" Y_image = %dn",Y_image);
- /*
- printf("Sampling factors: n");
- printf("Y : H=%d,V=%dn", YH,YV);
- printf("Cb : H=%d,V=%dn", CbH,CbV);
- printf("Cr : H=%d,V=%dn", CrH,CrV);
- printf("Restart markers = %dn", Restart_markers);
- printf("MCU restart = %dn", MCU_restart);
- getch();
- */
- printf("Decoding JPEG image...n");
- // main decoder
- start_time = clock();
- decode_JPEG_image();
- printf("Decoding finished.n");
- finish_time = clock();
- duration = (double)(finish_time - start_time) / CLK_TCK;
- printf( "Time elapsed: %2.1f secondsn", duration );
- if (!get_JPEG_buffer(X_image,Y_image,&our_image_buffer)) {exitmessage(error_string);return;}
- write_buf_to_BMP(our_image_buffer,X_image,Y_image, "image.bmp");
- getch();
- }