Ehlers Dominant Cycle Period.afl
上传用户:shiqiang
上传日期:2009-06-12
资源大小:1289k
文件大小:3k
源码类别:
金融证券系统
开发平台:
Others
- //------------------------------------------------------------------------------
- //
- // Formula Name: Ehlers Dominant Cycle Period
- // Author/Uploader: Not Too Swift
- // E-mail:
- // Date/Time Added: 2005-04-23 00:31:49
- // Origin:
- // Keywords:
- // Level: semi-advanced
- // Flags: indicator
- // Formula URL: http://www.amibroker.com/library/formula.php?id=460
- // Details URL: http://www.amibroker.com/library/detail.php?id=460
- //
- //------------------------------------------------------------------------------
- //
- // This is another calculation from Ehlers's "Cybernetic Analysis for Stocks
- // and Futures." It returns the dominant period length.
- //
- // This code is not elegant. I would greatly appreciate help in making it more
- // transparent and elegant.
- //
- //------------------------------------------------------------------------------
- SetBarsRequired(200, 0);
- // Ehlers Dominant Cycle Period
- // from Ehlers, John F. Cybernetic Analysis for Stocks and Futures. Wiley. 2004.
- // Chapter 9, p. 107. Code on p. 111.
- function CyclePeriod(array, alpha)
- // Figure 9.4 on p. 111
- {
- smooth = (array + 2*Ref(array, -1) + 2*Ref(array, -2) + Ref(array, -3))/6;
- // for(i = 0; i < 7; i++) cycle[i]=array[i]; // Initialize early values and as array
- for(i = 0; i < 6; i++)
- {
- InstPeriod[i] = 0; // Initialize early values and as array
- DeltaPhase[i] = 0;
- cycle[i]=0;
- Period[i]=0;
- }
- for(i = 6; i < BarCount; i++)
- {
- cycle[i] = (1 - .5*alpha)*(1 - .5*alpha)*(smooth[i] - 2*smooth[i-1] + smooth[i-2]) +
- 2*(1 - alpha)*cycle[i-1] - (1 - alpha)*(1 - alpha)*cycle[i-2];
- Q1[i] = (.0962*cycle[i] + .5769*cycle[i-2] -.5769*cycle[i-4] - .0962*cycle[i-6])*(.5 + .08*InstPeriod[i-1]);
- I1[i] = cycle[i-3];
- if(Q1[i] != 0 AND Q1[i-1] != 0)
- DeltaPhase[i] = (I1[i]/Q1[i] - I1[i-1]/Q1[i-1])/(1 + I1[i]*I1[i-1]/(Q1[i]*Q1[i-1]));
- if(DeltaPhase[i] < 0.1) DeltaPhase[i] = 0.1;
- if(DeltaPhase[i] > 1.1) DeltaPhase[i] = 1.1;
- //----- Speed up the median calculation by placing it inline
- mlen = 5;
- for(k = mlen - 1; k >= 0; k--) {temparray[k] = DeltaPhase[i + k - (mlen - 1)];}
- temp=0;
- for(k = mlen - 1; k > 0; k--)
- {for (j = mlen - 1; j > 0; j--)
- {if (temparray[j-1] > temparray[j])
- {
- temp = temparray[j-1];
- temparray[j-1] = temparray[j];
- temparray[j] = temp;
- }
- }
- }
- MedianDelta[i] = temparray[mlen - 1 - (mlen / 2)];
- //----- End median calculation
- if(MedianDelta[i] == 0) DC[i] = 15;
- else DC[i] = 6.28318/MedianDelta[i] + .5;
- InstPeriod[i] = .33*DC[i] + .67*InstPeriod[i-1];
- Period[i] = .15*InstPeriod[i] + .85*Period[i-1];
- }
- return Period;
- }
- Med = (H+L)/2;
- // CyclePeriod
- CP = CyclePeriod(Med, .07);
- Plot(CP, "CyclePeriod", colorRed, styleLine);
English
