pgtable.h
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:12k
- #ifndef _I386_PGTABLE_H
- #define _I386_PGTABLE_H
- #include <linux/config.h>
- /*
- * The Linux memory management assumes a three-level page table setup. On
- * the i386, we use that, but "fold" the mid level into the top-level page
- * table, so that we physically have the same two-level page table as the
- * i386 mmu expects.
- *
- * This file contains the functions and defines necessary to modify and use
- * the i386 page table tree.
- */
- #ifndef __ASSEMBLY__
- #include <asm/processor.h>
- #include <asm/fixmap.h>
- #include <linux/threads.h>
- #ifndef _I386_BITOPS_H
- #include <asm/bitops.h>
- #endif
- extern pgd_t swapper_pg_dir[1024];
- extern void paging_init(void);
- /* Caches aren't brain-dead on the intel. */
- #define flush_cache_all() do { } while (0)
- #define flush_cache_mm(mm) do { } while (0)
- #define flush_cache_range(mm, start, end) do { } while (0)
- #define flush_cache_page(vma, vmaddr) do { } while (0)
- #define flush_page_to_ram(page) do { } while (0)
- #define flush_dcache_page(page) do { } while (0)
- #define flush_icache_range(start, end) do { } while (0)
- #define flush_icache_page(vma,pg) do { } while (0)
- #define flush_icache_user_range(vma,pg,adr,len) do { } while (0)
- #define __flush_tlb()
- do {
- unsigned int tmpreg;
-
- __asm__ __volatile__(
- "movl %%cr3, %0; # flush TLB n"
- "movl %0, %%cr3; n"
- : "=r" (tmpreg)
- :: "memory");
- } while (0)
- /*
- * Global pages have to be flushed a bit differently. Not a real
- * performance problem because this does not happen often.
- */
- #define __flush_tlb_global()
- do {
- unsigned int tmpreg;
-
- __asm__ __volatile__(
- "movl %1, %%cr4; # turn off PGE n"
- "movl %%cr3, %0; # flush TLB n"
- "movl %0, %%cr3; n"
- "movl %2, %%cr4; # turn PGE back on n"
- : "=&r" (tmpreg)
- : "r" (mmu_cr4_features & ~X86_CR4_PGE),
- "r" (mmu_cr4_features)
- : "memory");
- } while (0)
- extern unsigned long pgkern_mask;
- /*
- * Do not check the PGE bit unnecesserily if this is a PPro+ kernel.
- */
- #ifdef CONFIG_X86_PGE
- # define __flush_tlb_all() __flush_tlb_global()
- #else
- # define __flush_tlb_all()
- do {
- if (cpu_has_pge)
- __flush_tlb_global();
- else
- __flush_tlb();
- } while (0)
- #endif
- #define __flush_tlb_single(addr)
- __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
- #ifdef CONFIG_X86_INVLPG
- # define __flush_tlb_one(addr) __flush_tlb_single(addr)
- #else
- # define __flush_tlb_one(addr)
- do {
- if (cpu_has_pge)
- __flush_tlb_single(addr);
- else
- __flush_tlb();
- } while (0)
- #endif
- /*
- * ZERO_PAGE is a global shared page that is always zero: used
- * for zero-mapped memory areas etc..
- */
- extern unsigned long empty_zero_page[1024];
- #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
- #endif /* !__ASSEMBLY__ */
- /*
- * The Linux x86 paging architecture is 'compile-time dual-mode', it
- * implements both the traditional 2-level x86 page tables and the
- * newer 3-level PAE-mode page tables.
- */
- #ifndef __ASSEMBLY__
- #if CONFIG_X86_PAE
- # include <asm/pgtable-3level.h>
- /*
- * Need to initialise the X86 PAE caches
- */
- extern void pgtable_cache_init(void);
- #else
- # include <asm/pgtable-2level.h>
- /*
- * No page table caches to initialise
- */
- #define pgtable_cache_init() do { } while (0)
- #endif
- #endif
- #define __beep() asm("movb $0x3,%al; outb %al,$0x61")
- #define PMD_SIZE (1UL << PMD_SHIFT)
- #define PMD_MASK (~(PMD_SIZE-1))
- #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
- #define PGDIR_MASK (~(PGDIR_SIZE-1))
- #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
- #define FIRST_USER_PGD_NR 0
- #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
- #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
- #define TWOLEVEL_PGDIR_SHIFT 22
- #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
- #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
- #ifndef __ASSEMBLY__
- /* Just any arbitrary offset to the start of the vmalloc VM area: the
- * current 8MB value just means that there will be a 8MB "hole" after the
- * physical memory until the kernel virtual memory starts. That means that
- * any out-of-bounds memory accesses will hopefully be caught.
- * The vmalloc() routines leaves a hole of 4kB between each vmalloced
- * area for the same reason. ;)
- */
- #define VMALLOC_OFFSET (8*1024*1024)
- #define VMALLOC_START (((unsigned long) high_memory + 2*VMALLOC_OFFSET-1) &
- ~(VMALLOC_OFFSET-1))
- #define VMALLOC_VMADDR(x) ((unsigned long)(x))
- #if CONFIG_HIGHMEM
- # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
- #else
- # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
- #endif
- /*
- * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
- * of the Pentium details, but assuming intel did the straightforward
- * thing, this bit set in the page directory entry just means that
- * the page directory entry points directly to a 4MB-aligned block of
- * memory.
- */
- #define _PAGE_BIT_PRESENT 0
- #define _PAGE_BIT_RW 1
- #define _PAGE_BIT_USER 2
- #define _PAGE_BIT_PWT 3
- #define _PAGE_BIT_PCD 4
- #define _PAGE_BIT_ACCESSED 5
- #define _PAGE_BIT_DIRTY 6
- #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
- #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
- #define _PAGE_PRESENT 0x001
- #define _PAGE_RW 0x002
- #define _PAGE_USER 0x004
- #define _PAGE_PWT 0x008
- #define _PAGE_PCD 0x010
- #define _PAGE_ACCESSED 0x020
- #define _PAGE_DIRTY 0x040
- #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
- #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
- #define _PAGE_PROTNONE 0x080 /* If not present */
- #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
- #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
- #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
- #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
- #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
- #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
- #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
- #define __PAGE_KERNEL
- (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
- #define __PAGE_KERNEL_NOCACHE
- (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED)
- #define __PAGE_KERNEL_RO
- (_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
- #ifdef CONFIG_X86_PGE
- # define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)
- #else
- # define MAKE_GLOBAL(x)
- ({
- pgprot_t __ret;
-
- if (cpu_has_pge)
- __ret = __pgprot((x) | _PAGE_GLOBAL);
- else
- __ret = __pgprot(x);
- __ret;
- })
- #endif
- #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
- #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
- #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
- /*
- * The i386 can't do page protection for execute, and considers that
- * the same are read. Also, write permissions imply read permissions.
- * This is the closest we can get..
- */
- #define __P000 PAGE_NONE
- #define __P001 PAGE_READONLY
- #define __P010 PAGE_COPY
- #define __P011 PAGE_COPY
- #define __P100 PAGE_READONLY
- #define __P101 PAGE_READONLY
- #define __P110 PAGE_COPY
- #define __P111 PAGE_COPY
- #define __S000 PAGE_NONE
- #define __S001 PAGE_READONLY
- #define __S010 PAGE_SHARED
- #define __S011 PAGE_SHARED
- #define __S100 PAGE_READONLY
- #define __S101 PAGE_READONLY
- #define __S110 PAGE_SHARED
- #define __S111 PAGE_SHARED
- /*
- * Define this if things work differently on an i386 and an i486:
- * it will (on an i486) warn about kernel memory accesses that are
- * done without a 'verify_area(VERIFY_WRITE,..)'
- */
- #undef TEST_VERIFY_AREA
- /* page table for 0-4MB for everybody */
- extern unsigned long pg0[1024];
- #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
- #define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0)
- #define pmd_none(x) (!pmd_val(x))
- #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
- #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
- #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
- #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
- /*
- * The following only work if pte_present() is true.
- * Undefined behaviour if not..
- */
- static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
- static inline int pte_exec(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
- static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
- static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
- static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
- static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
- static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
- static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
- static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
- static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
- static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
- static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
- static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
- static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
- static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
- static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); }
- static inline int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); }
- static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, ptep); }
- static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, ptep); }
- /*
- * Conversion functions: convert a page and protection to a page entry,
- * and a page entry and page directory to the page they refer to.
- */
- #define mk_pte(page, pgprot) __mk_pte((page) - mem_map, (pgprot))
- /* This takes a physical page address that is used by the remapping functions */
- #define mk_pte_phys(physpage, pgprot) __mk_pte((physpage) >> PAGE_SHIFT, pgprot)
- static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
- {
- pte.pte_low &= _PAGE_CHG_MASK;
- pte.pte_low |= pgprot_val(newprot);
- return pte;
- }
- #define page_pte(page) page_pte_prot(page, __pgprot(0))
- #define pmd_page(pmd)
- ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
- /* to find an entry in a page-table-directory. */
- #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
- #define __pgd_offset(address) pgd_index(address)
- #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
- /* to find an entry in a kernel page-table-directory */
- #define pgd_offset_k(address) pgd_offset(&init_mm, address)
- #define __pmd_offset(address)
- (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
- /* Find an entry in the third-level page table.. */
- #define __pte_offset(address)
- ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
- #define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) +
- __pte_offset(address))
- /*
- * The i386 doesn't have any external MMU info: the kernel page
- * tables contain all the necessary information.
- */
- #define update_mmu_cache(vma,address,pte) do { } while (0)
- /* Encode and de-code a swap entry */
- #define SWP_TYPE(x) (((x).val >> 1) & 0x3f)
- #define SWP_OFFSET(x) ((x).val >> 8)
- #define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
- #define pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_low })
- #define swp_entry_to_pte(x) ((pte_t) { (x).val })
- struct page;
- int change_page_attr(struct page *, int, pgprot_t prot);
- #endif /* !__ASSEMBLY__ */
- /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
- #define PageSkip(page) (0)
- #define kern_addr_valid(addr) (1)
- #define io_remap_page_range remap_page_range
- #endif /* _I386_PGTABLE_H */