shubio.h
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:165k
- /* $Id: shubio.h,v 1.1 2002/02/28 17:31:25 marcelo Exp $
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (C) 1992 - 1997, 2000-2002 Silicon Graphics, Inc. All rights reserved.
- */
- #ifndef _ASM_IA64_SN_SN2_SHUBIO_H
- #define _ASM_IA64_SN_SN2_SHUBIO_H
- #include <asm/sn/arch.h>
- #define HUB_WIDGET_ID_MAX 0xf
- #define IIO_NUM_ITTES 7
- #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
- #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
- /* This register is also accessible from
- * Crosstalk at address 0x0. */
- #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
- #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
- #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
- #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
- #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
- #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
- #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
- #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
- #define IIO_ILLR 0x00400130 /* IO LLP Log Register */
- #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
- #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
- #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
- #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
- #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
- #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
- #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
- #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
- #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
- #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
- #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
- #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
- #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
- #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
- #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
- #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
- #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
- #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
- #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
- #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
- #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
- #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
- #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
- #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
- #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
- #define IIO_IBCR 0x00400200 /* IO BTE Control Register */
- #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
- #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
- #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
- #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
- #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
- #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
- #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
- #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
- #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
- #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
- #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
- #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
- #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
- #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
- #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
- #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
- #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
- #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
- #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
- #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
- #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
- #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
- #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
- #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
- #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
- #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
- #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
- #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
- #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
- #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
- #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
- #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
- #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
- #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
- #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
- #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
- #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
- #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
- #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
- #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
- #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
- #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
- #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
- #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
- #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
- #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
- #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
- #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
- #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
- #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
- #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
- #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
- #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
- #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
- #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
- #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
- #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
- #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
- #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
- #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
- #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
- #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
- #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
- #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
- #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
- #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
- #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
- #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
- #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
- #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
- #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
- #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
- #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
- #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
- #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
- #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
- #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
- #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
- #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
- #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
- #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
- #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
- #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
- #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
- #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
- #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
- #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
- #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
- #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
- #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
- #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
- #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
- #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
- #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
- #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
- #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
- #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
- #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
- #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
- #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
- #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
- #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
- #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
- #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
- #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
- #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
- #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
- #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
- #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
- #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
- #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
- #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
- #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
- #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
- #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
- #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
- #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
- #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
- #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
- #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
- #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
- #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
- #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
- #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
- #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
- #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
- #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
- #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
- #define IIO_IPCR 0x00430000 /* IO Performance Control */
- #define IIO_IPPR 0x00430008 /* IO Performance Profiling */
- #ifndef __ASSEMBLY__
- /************************************************************************
- * *
- * Description: This register echoes some information from the *
- * LB_REV_ID register. It is available through Crosstalk as described *
- * above. The REV_NUM and MFG_NUM fields receive their values from *
- * the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
- * The PART_NUM field's value is the Crosstalk device ID number that *
- * Steve Miller assigned to the SHub chip. *
- * *
- ************************************************************************/
- typedef union ii_wid_u {
- shubreg_t ii_wid_regval;
- struct {
- shubreg_t w_rsvd_1 : 1;
- shubreg_t w_mfg_num : 11;
- shubreg_t w_part_num : 16;
- shubreg_t w_rev_num : 4;
- shubreg_t w_rsvd : 32;
- } ii_wid_fld_s;
- } ii_wid_u_t;
- /************************************************************************
- * *
- * The fields in this register are set upon detection of an error *
- * and cleared by various mechanisms, as explained in the *
- * description. *
- * *
- ************************************************************************/
- typedef union ii_wstat_u {
- shubreg_t ii_wstat_regval;
- struct {
- shubreg_t w_pending : 4;
- shubreg_t w_xt_crd_to : 1;
- shubreg_t w_xt_tail_to : 1;
- shubreg_t w_rsvd_3 : 3;
- shubreg_t w_tx_mx_rty : 1;
- shubreg_t w_rsvd_2 : 6;
- shubreg_t w_llp_tx_cnt : 8;
- shubreg_t w_rsvd_1 : 8;
- shubreg_t w_crazy : 1;
- shubreg_t w_rsvd : 31;
- } ii_wstat_fld_s;
- } ii_wstat_u_t;
- /************************************************************************
- * *
- * Description: This is a read-write enabled register. It controls *
- * various aspects of the Crosstalk flow control. *
- * *
- ************************************************************************/
- typedef union ii_wcr_u {
- shubreg_t ii_wcr_regval;
- struct {
- shubreg_t w_wid : 4;
- shubreg_t w_tag : 1;
- shubreg_t w_rsvd_1 : 8;
- shubreg_t w_dst_crd : 3;
- shubreg_t w_f_bad_pkt : 1;
- shubreg_t w_dir_con : 1;
- shubreg_t w_e_thresh : 5;
- shubreg_t w_rsvd : 41;
- } ii_wcr_fld_s;
- } ii_wcr_u_t;
- /************************************************************************
- * *
- * Description: This register's value is a bit vector that guards *
- * access to local registers within the II as well as to external *
- * Crosstalk widgets. Each bit in the register corresponds to a *
- * particular region in the system; a region consists of one, two or *
- * four nodes (depending on the value of the REGION_SIZE field in the *
- * LB_REV_ID register, which is documented in Section 8.3.1.1). The *
- * protection provided by this register applies to PIO read *
- * operations as well as PIO write operations. The II will perform a *
- * PIO read or write request only if the bit for the requestor's *
- * region is set; otherwise, the II will not perform the requested *
- * operation and will return an error response. When a PIO read or *
- * write request targets an external Crosstalk widget, then not only *
- * must the bit for the requestor's region be set in the ILAPR, but *
- * also the target widget's bit in the IOWA register must be set in *
- * order for the II to perform the requested operation; otherwise, *
- * the II will return an error response. Hence, the protection *
- * provided by the IOWA register supplements the protection provided *
- * by the ILAPR for requests that target external Crosstalk widgets. *
- * This register itself can be accessed only by the nodes whose *
- * region ID bits are enabled in this same register. It can also be *
- * accessed through the IAlias space by the local processors. *
- * The reset value of this register allows access by all nodes. *
- * *
- ************************************************************************/
- typedef union ii_ilapr_u {
- shubreg_t ii_ilapr_regval;
- struct {
- shubreg_t i_region : 64;
- } ii_ilapr_fld_s;
- } ii_ilapr_u_t;
- /************************************************************************
- * *
- * Description: A write to this register of the 64-bit value *
- * "SGIrules" in ASCII, will cause the bit in the ILAPR register *
- * corresponding to the region of the requestor to be set (allow *
- * access). A write of any other value will be ignored. Access *
- * protection for this register is "SGIrules". *
- * This register can also be accessed through the IAlias space. *
- * However, this access will not change the access permissions in the *
- * ILAPR. *
- * *
- ************************************************************************/
- typedef union ii_ilapo_u {
- shubreg_t ii_ilapo_regval;
- struct {
- shubreg_t i_io_ovrride : 64;
- } ii_ilapo_fld_s;
- } ii_ilapo_u_t;
- /************************************************************************
- * *
- * This register qualifies all the PIO and Graphics writes launched *
- * from the SHUB towards a widget. *
- * *
- ************************************************************************/
- typedef union ii_iowa_u {
- shubreg_t ii_iowa_regval;
- struct {
- shubreg_t i_w0_oac : 1;
- shubreg_t i_rsvd_1 : 7;
- shubreg_t i_wx_oac : 8;
- shubreg_t i_rsvd : 48;
- } ii_iowa_fld_s;
- } ii_iowa_u_t;
- /************************************************************************
- * *
- * Description: This register qualifies all the requests launched *
- * from a widget towards the Shub. This register is intended to be *
- * used by software in case of misbehaving widgets. *
- * *
- * *
- ************************************************************************/
- typedef union ii_iiwa_u {
- shubreg_t ii_iiwa_regval;
- struct {
- shubreg_t i_w0_iac : 1;
- shubreg_t i_rsvd_1 : 7;
- shubreg_t i_wx_iac : 8;
- shubreg_t i_rsvd : 48;
- } ii_iiwa_fld_s;
- } ii_iiwa_u_t;
- /************************************************************************
- * *
- * Description: This register qualifies all the operations launched *
- * from a widget towards the SHub. It allows individual access *
- * control for up to 8 devices per widget. A device refers to *
- * individual DMA master hosted by a widget. *
- * The bits in each field of this register are cleared by the Shub *
- * upon detection of an error which requires the device to be *
- * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric *
- * Crosstalk). Whether or not a device has access rights to this *
- * Shub is determined by an AND of the device enable bit in the *
- * appropriate field of this register and the corresponding bit in *
- * the Wx_IAC field (for the widget which this device belongs to). *
- * The bits in this field are set by writing a 1 to them. Incoming *
- * replies from Crosstalk are not subject to this access control *
- * mechanism. *
- * *
- ************************************************************************/
- typedef union ii_iidem_u {
- shubreg_t ii_iidem_regval;
- struct {
- shubreg_t i_w8_dxs : 8;
- shubreg_t i_w9_dxs : 8;
- shubreg_t i_wa_dxs : 8;
- shubreg_t i_wb_dxs : 8;
- shubreg_t i_wc_dxs : 8;
- shubreg_t i_wd_dxs : 8;
- shubreg_t i_we_dxs : 8;
- shubreg_t i_wf_dxs : 8;
- } ii_iidem_fld_s;
- } ii_iidem_u_t;
- /************************************************************************
- * *
- * This register contains the various programmable fields necessary *
- * for controlling and observing the LLP signals. *
- * *
- ************************************************************************/
- typedef union ii_ilcsr_u {
- shubreg_t ii_ilcsr_regval;
- struct {
- shubreg_t i_nullto : 6;
- shubreg_t i_rsvd_4 : 2;
- shubreg_t i_wrmrst : 1;
- shubreg_t i_rsvd_3 : 1;
- shubreg_t i_llp_en : 1;
- shubreg_t i_bm8 : 1;
- shubreg_t i_llp_stat : 2;
- shubreg_t i_remote_power : 1;
- shubreg_t i_rsvd_2 : 1;
- shubreg_t i_maxrtry : 10;
- shubreg_t i_d_avail_sel : 2;
- shubreg_t i_rsvd_1 : 4;
- shubreg_t i_maxbrst : 10;
- shubreg_t i_rsvd : 22;
- } ii_ilcsr_fld_s;
- } ii_ilcsr_u_t;
- /************************************************************************
- * *
- * This is simply a status registers that monitors the LLP error *
- * rate. *
- * *
- ************************************************************************/
- typedef union ii_illr_u {
- shubreg_t ii_illr_regval;
- struct {
- shubreg_t i_sn_cnt : 16;
- shubreg_t i_cb_cnt : 16;
- shubreg_t i_rsvd : 32;
- } ii_illr_fld_s;
- } ii_illr_u_t;
- /************************************************************************
- * *
- * Description: All II-detected non-BTE error interrupts are *
- * specified via this register. *
- * NOTE: The PI interrupt register address is hardcoded in the II. If *
- * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI *
- * packet) to address offset 0x0180_0090 within the local register *
- * address space of PI0 on the node specified by the NODE field. If *
- * PI_ID==1, then the II sends the interrupt request to address *
- * offset 0x01A0_0090 within the local register address space of PI1 *
- * on the node specified by the NODE field. *
- * *
- ************************************************************************/
- typedef union ii_iidsr_u {
- shubreg_t ii_iidsr_regval;
- struct {
- shubreg_t i_level : 8;
- shubreg_t i_pi_id : 1;
- shubreg_t i_node : 11;
- shubreg_t i_rsvd_3 : 4;
- shubreg_t i_enable : 1;
- shubreg_t i_rsvd_2 : 3;
- shubreg_t i_int_sent : 2;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_pi0_forward_int : 1;
- shubreg_t i_pi1_forward_int : 1;
- shubreg_t i_rsvd : 30;
- } ii_iidsr_fld_s;
- } ii_iidsr_u_t;
- /************************************************************************
- * *
- * There are two instances of this register. This register is used *
- * for matching up the incoming responses from the graphics widget to *
- * the processor that initiated the graphics operation. The *
- * write-responses are converted to graphics credits and returned to *
- * the processor so that the processor interface can manage the flow *
- * control. *
- * *
- ************************************************************************/
- typedef union ii_igfx0_u {
- shubreg_t ii_igfx0_regval;
- struct {
- shubreg_t i_w_num : 4;
- shubreg_t i_pi_id : 1;
- shubreg_t i_n_num : 12;
- shubreg_t i_p_num : 1;
- shubreg_t i_rsvd : 46;
- } ii_igfx0_fld_s;
- } ii_igfx0_u_t;
- /************************************************************************
- * *
- * There are two instances of this register. This register is used *
- * for matching up the incoming responses from the graphics widget to *
- * the processor that initiated the graphics operation. The *
- * write-responses are converted to graphics credits and returned to *
- * the processor so that the processor interface can manage the flow *
- * control. *
- * *
- ************************************************************************/
- typedef union ii_igfx1_u {
- shubreg_t ii_igfx1_regval;
- struct {
- shubreg_t i_w_num : 4;
- shubreg_t i_pi_id : 1;
- shubreg_t i_n_num : 12;
- shubreg_t i_p_num : 1;
- shubreg_t i_rsvd : 46;
- } ii_igfx1_fld_s;
- } ii_igfx1_u_t;
- /************************************************************************
- * *
- * There are two instances of this registers. These registers are *
- * used as scratch registers for software use. *
- * *
- ************************************************************************/
- typedef union ii_iscr0_u {
- shubreg_t ii_iscr0_regval;
- struct {
- shubreg_t i_scratch : 64;
- } ii_iscr0_fld_s;
- } ii_iscr0_u_t;
- /************************************************************************
- * *
- * There are two instances of this registers. These registers are *
- * used as scratch registers for software use. *
- * *
- ************************************************************************/
- typedef union ii_iscr1_u {
- shubreg_t ii_iscr1_regval;
- struct {
- shubreg_t i_scratch : 64;
- } ii_iscr1_fld_s;
- } ii_iscr1_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a Shub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the SHub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the Shub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte1_u {
- shubreg_t ii_itte1_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte1_fld_s;
- } ii_itte1_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a Shub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the Shub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the Shub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte2_u {
- shubreg_t ii_itte2_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte2_fld_s;
- } ii_itte2_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a Shub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the Shub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the SHub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte3_u {
- shubreg_t ii_itte3_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte3_fld_s;
- } ii_itte3_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a SHub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the SHub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the SHub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte4_u {
- shubreg_t ii_itte4_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte4_fld_s;
- } ii_itte4_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a SHub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the Shub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the Shub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte5_u {
- shubreg_t ii_itte5_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte5_fld_s;
- } ii_itte5_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a Shub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the Shub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the Shub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte6_u {
- shubreg_t ii_itte6_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte6_fld_s;
- } ii_itte6_u_t;
- /************************************************************************
- * *
- * Description: There are seven instances of translation table entry *
- * registers. Each register maps a Shub Big Window to a 48-bit *
- * address on Crosstalk. *
- * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
- * number) are used to select one of these 7 registers. The Widget *
- * number field is then derived from the W_NUM field for synthesizing *
- * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
- * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
- * are padded with zeros. Although the maximum Crosstalk space *
- * addressable by the Shub is thus the lower 16 GBytes per widget *
- * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
- * space can be accessed. *
- * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
- * Window number) are used to select one of these 7 registers. The *
- * Widget number field is then derived from the W_NUM field for *
- * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
- * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
- * field is used as Crosstalk[47], and remainder of the Crosstalk *
- * address bits (Crosstalk[46:34]) are always zero. While the maximum *
- * Crosstalk space addressable by the SHub is thus the lower *
- * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
- * of this space can be accessed. *
- * *
- ************************************************************************/
- typedef union ii_itte7_u {
- shubreg_t ii_itte7_regval;
- struct {
- shubreg_t i_offset : 5;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_w_num : 4;
- shubreg_t i_iosp : 1;
- shubreg_t i_rsvd : 51;
- } ii_itte7_fld_s;
- } ii_itte7_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprb0_u {
- shubreg_t ii_iprb0_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprb0_fld_s;
- } ii_iprb0_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprb8_u {
- shubreg_t ii_iprb8_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprb8_fld_s;
- } ii_iprb8_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprb9_u {
- shubreg_t ii_iprb9_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprb9_fld_s;
- } ii_iprb9_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * *
- * *
- ************************************************************************/
- typedef union ii_iprba_u {
- shubreg_t ii_iprba_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprba_fld_s;
- } ii_iprba_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprbb_u {
- shubreg_t ii_iprbb_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprbb_fld_s;
- } ii_iprbb_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprbc_u {
- shubreg_t ii_iprbc_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprbc_fld_s;
- } ii_iprbc_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprbd_u {
- shubreg_t ii_iprbd_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprbd_fld_s;
- } ii_iprbd_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of SHub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprbe_u {
- shubreg_t ii_iprbe_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprbe_fld_s;
- } ii_iprbe_u_t;
- /************************************************************************
- * *
- * Description: There are 9 instances of this register, one per *
- * actual widget in this implementation of Shub and Crossbow. *
- * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
- * refers to Crossbow's internal space. *
- * This register contains the state elements per widget that are *
- * necessary to manage the PIO flow control on Crosstalk and on the *
- * Router Network. See the PIO Flow Control chapter for a complete *
- * description of this register *
- * The SPUR_WR bit requires some explanation. When this register is *
- * written, the new value of the C field is captured in an internal *
- * register so the hardware can remember what the programmer wrote *
- * into the credit counter. The SPUR_WR bit sets whenever the C field *
- * increments above this stored value, which indicates that there *
- * have been more responses received than requests sent. The SPUR_WR *
- * bit cannot be cleared until a value is written to the IPRBx *
- * register; the write will correct the C field and capture its new *
- * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
- * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
- * . *
- * *
- ************************************************************************/
- typedef union ii_iprbf_u {
- shubreg_t ii_iprbf_regval;
- struct {
- shubreg_t i_c : 8;
- shubreg_t i_na : 14;
- shubreg_t i_rsvd_2 : 2;
- shubreg_t i_nb : 14;
- shubreg_t i_rsvd_1 : 2;
- shubreg_t i_m : 2;
- shubreg_t i_f : 1;
- shubreg_t i_of_cnt : 5;
- shubreg_t i_error : 1;
- shubreg_t i_rd_to : 1;
- shubreg_t i_spur_wr : 1;
- shubreg_t i_spur_rd : 1;
- shubreg_t i_rsvd : 11;
- shubreg_t i_mult_err : 1;
- } ii_iprbe_fld_s;
- } ii_iprbf_u_t;
- /************************************************************************
- * *
- * This register specifies the timeout value to use for monitoring *
- * Crosstalk credits which are used outbound to Crosstalk. An *
- * internal counter called the Crosstalk Credit Timeout Counter *
- * increments every 128 II clocks. The counter starts counting *
- * anytime the credit count drops below a threshold, and resets to *
- * zero (stops counting) anytime the credit count is at or above the *
- * threshold. The threshold is 1 credit in direct connect mode and 2 *
- * in Crossbow connect mode. When the internal Crosstalk Credit *
- * Timeout Counter reaches the value programmed in this register, a *
- * Crosstalk Credit Timeout has occurred. The internal counter is not *
- * readable from software, and stops counting at its maximum value, *
- * so it cannot cause more than one interrupt. *
- * *
- ************************************************************************/
- typedef union ii_ixcc_u {
- shubreg_t ii_ixcc_regval;
- struct {
- shubreg_t i_time_out : 26;
- shubreg_t i_rsvd : 38;
- } ii_ixcc_fld_s;
- } ii_ixcc_u_t;
- /************************************************************************
- * *
- * Description: This register qualifies all the PIO and DMA *
- * operations launched from widget 0 towards the SHub. In *
- * addition, it also qualifies accesses by the BTE streams. *
- * The bits in each field of this register are cleared by the SHub *
- * upon detection of an error which requires widget 0 or the BTE *
- * streams to be terminated. Whether or not widget x has access *
- * rights to this SHub is determined by an AND of the device *
- * enable bit in the appropriate field of this register and bit 0 in *
- * the Wx_IAC field. The bits in this field are set by writing a 1 to *
- * them. Incoming replies from Crosstalk are not subject to this *
- * access control mechanism. *
- * *
- ************************************************************************/
- typedef union ii_imem_u {
- shubreg_t ii_imem_regval;
- struct {
- shubreg_t i_w0_esd : 1;
- shubreg_t i_rsvd_3 : 3;
- shubreg_t i_b0_esd : 1;
- shubreg_t i_rsvd_2 : 3;
- shubreg_t i_b1_esd : 1;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_clr_precise : 1;
- shubreg_t i_rsvd : 51;
- } ii_imem_fld_s;
- } ii_imem_u_t;
- /************************************************************************
- * *
- * Description: This register specifies the timeout value to use for *
- * monitoring Crosstalk tail flits coming into the Shub in the *
- * TAIL_TO field. An internal counter associated with this register *
- * is incremented every 128 II internal clocks (7 bits). The counter *
- * starts counting anytime a header micropacket is received and stops *
- * counting (and resets to zero) any time a micropacket with a Tail *
- * bit is received. Once the counter reaches the threshold value *
- * programmed in this register, it generates an interrupt to the *
- * processor that is programmed into the IIDSR. The counter saturates *
- * (does not roll over) at its maximum value, so it cannot cause *
- * another interrupt until after it is cleared. *
- * The register also contains the Read Response Timeout values. The *
- * Prescalar is 23 bits, and counts II clocks. An internal counter *
- * increments on every II clock and when it reaches the value in the *
- * Prescalar field, all IPRTE registers with their valid bits set *
- * have their Read Response timers bumped. Whenever any of them match *
- * the value in the RRSP_TO field, a Read Response Timeout has *
- * occurred, and error handling occurs as described in the Error *
- * Handling section of this document. *
- * *
- ************************************************************************/
- typedef union ii_ixtt_u {
- shubreg_t ii_ixtt_regval;
- struct {
- shubreg_t i_tail_to : 26;
- shubreg_t i_rsvd_1 : 6;
- shubreg_t i_rrsp_ps : 23;
- shubreg_t i_rrsp_to : 5;
- shubreg_t i_rsvd : 4;
- } ii_ixtt_fld_s;
- } ii_ixtt_u_t;
- /************************************************************************
- * *
- * Writing a 1 to the fields of this register clears the appropriate *
- * error bits in other areas of SHub. Note that when the *
- * E_PRB_x bits are used to clear error bits in PRB registers, *
- * SPUR_RD and SPUR_WR may persist, because they require additional *
- * action to clear them. See the IPRBx and IXSS Register *
- * specifications. *
- * *
- ************************************************************************/
- typedef union ii_ieclr_u {
- shubreg_t ii_ieclr_regval;
- struct {
- shubreg_t i_e_prb_0 : 1;
- shubreg_t i_rsvd : 7;
- shubreg_t i_e_prb_8 : 1;
- shubreg_t i_e_prb_9 : 1;
- shubreg_t i_e_prb_a : 1;
- shubreg_t i_e_prb_b : 1;
- shubreg_t i_e_prb_c : 1;
- shubreg_t i_e_prb_d : 1;
- shubreg_t i_e_prb_e : 1;
- shubreg_t i_e_prb_f : 1;
- shubreg_t i_e_crazy : 1;
- shubreg_t i_e_bte_0 : 1;
- shubreg_t i_e_bte_1 : 1;
- shubreg_t i_reserved_1 : 10;
- shubreg_t i_spur_rd_hdr : 1;
- shubreg_t i_cam_intr_to : 1;
- shubreg_t i_cam_overflow : 1;
- shubreg_t i_cam_read_miss : 1;
- shubreg_t i_ioq_rep_underflow : 1;
- shubreg_t i_ioq_req_underflow : 1;
- shubreg_t i_ioq_rep_overflow : 1;
- shubreg_t i_ioq_req_overflow : 1;
- shubreg_t i_iiq_rep_overflow : 1;
- shubreg_t i_iiq_req_overflow : 1;
- shubreg_t i_ii_xn_rep_cred_overflow : 1;
- shubreg_t i_ii_xn_req_cred_overflow : 1;
- shubreg_t i_ii_xn_invalid_cmd : 1;
- shubreg_t i_xn_ii_invalid_cmd : 1;
- shubreg_t i_reserved_2 : 21;
- } ii_ieclr_fld_s;
- } ii_ieclr_u_t;
- /************************************************************************
- * *
- * This register controls both BTEs. SOFT_RESET is intended for *
- * recovery after an error. COUNT controls the total number of CRBs *
- * that both BTEs (combined) can use, which affects total BTE *
- * bandwidth. *
- * *
- ************************************************************************/
- typedef union ii_ibcr_u {
- shubreg_t ii_ibcr_regval;
- struct {
- shubreg_t i_count : 4;
- shubreg_t i_rsvd_1 : 4;
- shubreg_t i_soft_reset : 1;
- shubreg_t i_rsvd : 55;
- } ii_ibcr_fld_s;
- } ii_ibcr_u_t;
- /************************************************************************
- * *
- * This register contains the header of a spurious read response *
- * received from Crosstalk. A spurious read response is defined as a *
- * read response received by II from a widget for which (1) the SIDN *
- * has a value between 1 and 7, inclusive (II never sends requests to *
- * these widgets (2) there is no valid IPRTE register which *
- * corresponds to the TNUM, or (3) the widget indicated in SIDN is *
- * not the same as the widget recorded in the IPRTE register *
- * referenced by the TNUM. If this condition is true, and if the *
- * IXSS[VALID] bit is clear, then the header of the spurious read *
- * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The *
- * errant header is thereby captured, and no further spurious read *
- * respones are captured until IXSS[VALID] is cleared by setting the *
- * appropriate bit in IECLR.Everytime a spurious read response is *
- * detected, the SPUR_RD bit of the PRB corresponding to the incoming *
- * message's SIDN field is set. This always happens, regarless of *
- * whether a header is captured. The programmer should check *
- * IXSM[SIDN] to determine which widget sent the spurious response, *
- * because there may be more than one SPUR_RD bit set in the PRB *
- * registers. The widget indicated by IXSM[SIDN] was the first *
- * spurious read response to be received since the last time *
- * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB *
- * will be set. Any SPUR_RD bits in any other PRB registers indicate *
- * spurious messages from other widets which were detected after the *
- * header was captured.. *
- * *
- ************************************************************************/
- typedef union ii_ixsm_u {
- shubreg_t ii_ixsm_regval;
- struct {
- shubreg_t i_byte_en : 32;
- shubreg_t i_reserved : 1;
- shubreg_t i_tag : 3;
- shubreg_t i_alt_pactyp : 4;
- shubreg_t i_bo : 1;
- shubreg_t i_error : 1;
- shubreg_t i_vbpm : 1;
- shubreg_t i_gbr : 1;
- shubreg_t i_ds : 2;
- shubreg_t i_ct : 1;
- shubreg_t i_tnum : 5;
- shubreg_t i_pactyp : 4;
- shubreg_t i_sidn : 4;
- shubreg_t i_didn : 4;
- } ii_ixsm_fld_s;
- } ii_ixsm_u_t;
- /************************************************************************
- * *
- * This register contains the sideband bits of a spurious read *
- * response received from Crosstalk. *
- * *
- ************************************************************************/
- typedef union ii_ixss_u {
- shubreg_t ii_ixss_regval;
- struct {
- shubreg_t i_sideband : 8;
- shubreg_t i_rsvd : 55;
- shubreg_t i_valid : 1;
- } ii_ixss_fld_s;
- } ii_ixss_u_t;
- /************************************************************************
- * *
- * This register enables software to access the II LLP's test port. *
- * Refer to the LLP 2.5 documentation for an explanation of the test *
- * port. Software can write to this register to program the values *
- * for the control fields (TestErrCapture, TestClear, TestFlit, *
- * TestMask and TestSeed). Similarly, software can read from this *
- * register to obtain the values of the test port's status outputs *
- * (TestCBerr, TestValid and TestData). *
- * *
- ************************************************************************/
- typedef union ii_ilct_u {
- shubreg_t ii_ilct_regval;
- struct {
- shubreg_t i_test_seed : 20;
- shubreg_t i_test_mask : 8;
- shubreg_t i_test_data : 20;
- shubreg_t i_test_valid : 1;
- shubreg_t i_test_cberr : 1;
- shubreg_t i_test_flit : 3;
- shubreg_t i_test_clear : 1;
- shubreg_t i_test_err_capture : 1;
- shubreg_t i_rsvd : 9;
- } ii_ilct_fld_s;
- } ii_ilct_u_t;
- /************************************************************************
- * *
- * If the II detects an illegal incoming Duplonet packet (request or *
- * reply) when VALID==0 in the IIEPH1 register, then it saves the *
- * contents of the packet's header flit in the IIEPH1 and IIEPH2 *
- * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, *
- * and assigns a value to the ERR_TYPE field which indicates the *
- * specific nature of the error. The II recognizes four different *
- * types of errors: short request packets (ERR_TYPE==2), short reply *
- * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long *
- * reply packets (ERR_TYPE==5). The encodings for these types of *
- * errors were chosen to be consistent with the same types of errors *
- * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in *
- * the LB unit). If the II detects an illegal incoming Duplonet *
- * packet when VALID==1 in the IIEPH1 register, then it merely sets *
- * the OVERRUN bit to indicate that a subsequent error has happened, *
- * and does nothing further. *
- * *
- ************************************************************************/
- typedef union ii_iieph1_u {
- shubreg_t ii_iieph1_regval;
- struct {
- shubreg_t i_command : 7;
- shubreg_t i_rsvd_5 : 1;
- shubreg_t i_suppl : 14;
- shubreg_t i_rsvd_4 : 1;
- shubreg_t i_source : 14;
- shubreg_t i_rsvd_3 : 1;
- shubreg_t i_err_type : 4;
- shubreg_t i_rsvd_2 : 4;
- shubreg_t i_overrun : 1;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_valid : 1;
- shubreg_t i_rsvd : 13;
- } ii_iieph1_fld_s;
- } ii_iieph1_u_t;
- /************************************************************************
- * *
- * This register holds the Address field from the header flit of an *
- * incoming erroneous Duplonet packet, along with the tail bit which *
- * accompanied this header flit. This register is essentially an *
- * extension of IIEPH1. Two registers were necessary because the 64 *
- * bits available in only a single register were insufficient to *
- * capture the entire header flit of an erroneous packet. *
- * *
- ************************************************************************/
- typedef union ii_iieph2_u {
- shubreg_t ii_iieph2_regval;
- struct {
- shubreg_t i_rsvd_0 : 3;
- shubreg_t i_address : 47;
- shubreg_t i_rsvd_1 : 10;
- shubreg_t i_tail : 1;
- shubreg_t i_rsvd : 3;
- } ii_iieph2_fld_s;
- } ii_iieph2_u_t;
- /******************************/
- /************************************************************************
- * *
- * This register's value is a bit vector that guards access from SXBs *
- * to local registers within the II as well as to external Crosstalk *
- * widgets *
- * *
- ************************************************************************/
- typedef union ii_islapr_u {
- shubreg_t ii_islapr_regval;
- struct {
- shubreg_t i_region : 64;
- } ii_islapr_fld_s;
- } ii_islapr_u_t;
- /************************************************************************
- * *
- * A write to this register of the 56-bit value "Pup+Bun" will cause *
- * the bit in the ISLAPR register corresponding to the region of the *
- * requestor to be set (access allowed). (
- * *
- ************************************************************************/
- typedef union ii_islapo_u {
- shubreg_t ii_islapo_regval;
- struct {
- shubreg_t i_io_sbx_ovrride : 56;
- shubreg_t i_rsvd : 8;
- } ii_islapo_fld_s;
- } ii_islapo_u_t;
- /************************************************************************
- * *
- * Determines how long the wrapper will wait aftr an interrupt is *
- * initially issued from the II before it times out the outstanding *
- * interrupt and drops it from the interrupt queue. *
- * *
- ************************************************************************/
- typedef union ii_iwi_u {
- shubreg_t ii_iwi_regval;
- struct {
- shubreg_t i_prescale : 24;
- shubreg_t i_rsvd : 8;
- shubreg_t i_timeout : 8;
- shubreg_t i_rsvd1 : 8;
- shubreg_t i_intrpt_retry_period : 8;
- shubreg_t i_rsvd2 : 8;
- } ii_iwi_fld_s;
- } ii_iwi_u_t;
- /************************************************************************
- * *
- * Log errors which have occurred in the II wrapper. The errors are *
- * cleared by writing to the IECLR register. *
- * *
- ************************************************************************/
- typedef union ii_iwel_u {
- shubreg_t ii_iwel_regval;
- struct {
- shubreg_t i_intr_timed_out : 1;
- shubreg_t i_rsvd : 7;
- shubreg_t i_cam_overflow : 1;
- shubreg_t i_cam_read_miss : 1;
- shubreg_t i_rsvd1 : 2;
- shubreg_t i_ioq_rep_underflow : 1;
- shubreg_t i_ioq_req_underflow : 1;
- shubreg_t i_ioq_rep_overflow : 1;
- shubreg_t i_ioq_req_overflow : 1;
- shubreg_t i_iiq_rep_overflow : 1;
- shubreg_t i_iiq_req_overflow : 1;
- shubreg_t i_rsvd2 : 6;
- shubreg_t i_ii_xn_rep_cred_over_under: 1;
- shubreg_t i_ii_xn_req_cred_over_under: 1;
- shubreg_t i_rsvd3 : 6;
- shubreg_t i_ii_xn_invalid_cmd : 1;
- shubreg_t i_xn_ii_invalid_cmd : 1;
- shubreg_t i_rsvd4 : 30;
- } ii_iwel_fld_s;
- } ii_iwel_u_t;
- /************************************************************************
- * *
- * Controls the II wrapper. *
- * *
- ************************************************************************/
- typedef union ii_iwc_u {
- shubreg_t ii_iwc_regval;
- struct {
- shubreg_t i_dma_byte_swap : 1;
- shubreg_t i_rsvd : 3;
- shubreg_t i_cam_read_lines_reset : 1;
- shubreg_t i_rsvd1 : 3;
- shubreg_t i_ii_xn_cred_over_under_log: 1;
- shubreg_t i_rsvd2 : 19;
- shubreg_t i_xn_rep_iq_depth : 5;
- shubreg_t i_rsvd3 : 3;
- shubreg_t i_xn_req_iq_depth : 5;
- shubreg_t i_rsvd4 : 3;
- shubreg_t i_iiq_depth : 6;
- shubreg_t i_rsvd5 : 12;
- shubreg_t i_force_rep_cred : 1;
- shubreg_t i_force_req_cred : 1;
- } ii_iwc_fld_s;
- } ii_iwc_u_t;
- /************************************************************************
- * *
- * Status in the II wrapper. *
- * *
- ************************************************************************/
- typedef union ii_iws_u {
- shubreg_t ii_iws_regval;
- struct {
- shubreg_t i_xn_rep_iq_credits : 5;
- shubreg_t i_rsvd : 3;
- shubreg_t i_xn_req_iq_credits : 5;
- shubreg_t i_rsvd1 : 51;
- } ii_iws_fld_s;
- } ii_iws_u_t;
- /************************************************************************
- * *
- * Masks errors in the IWEL register. *
- * *
- ************************************************************************/
- typedef union ii_iweim_u {
- shubreg_t ii_iweim_regval;
- struct {
- shubreg_t i_intr_timed_out : 1;
- shubreg_t i_rsvd : 7;
- shubreg_t i_cam_overflow : 1;
- shubreg_t i_cam_read_miss : 1;
- shubreg_t i_rsvd1 : 2;
- shubreg_t i_ioq_rep_underflow : 1;
- shubreg_t i_ioq_req_underflow : 1;
- shubreg_t i_ioq_rep_overflow : 1;
- shubreg_t i_ioq_req_overflow : 1;
- shubreg_t i_iiq_rep_overflow : 1;
- shubreg_t i_iiq_req_overflow : 1;
- shubreg_t i_rsvd2 : 6;
- shubreg_t i_ii_xn_rep_cred_overflow : 1;
- shubreg_t i_ii_xn_req_cred_overflow : 1;
- shubreg_t i_rsvd3 : 6;
- shubreg_t i_ii_xn_invalid_cmd : 1;
- shubreg_t i_xn_ii_invalid_cmd : 1;
- shubreg_t i_rsvd4 : 30;
- } ii_iweim_fld_s;
- } ii_iweim_u_t;
- /************************************************************************
- * *
- * A write to this register causes a particular field in the *
- * corresponding widget's PRB entry to be adjusted up or down by 1. *
- * This counter should be used when recovering from error and reset *
- * conditions. Note that software would be capable of causing *
- * inadvertent overflow or underflow of these counters. *
- * *
- ************************************************************************/
- typedef union ii_ipca_u {
- shubreg_t ii_ipca_regval;
- struct {
- shubreg_t i_wid : 4;
- shubreg_t i_adjust : 1;
- shubreg_t i_rsvd_1 : 3;
- shubreg_t i_field : 2;
- shubreg_t i_rsvd : 54;
- } ii_ipca_fld_s;
- } ii_ipca_u_t;
- /************************************************************************
- * *
- * There are 8 instances of this register. This register contains *
- * the information that the II has to remember once it has launched a *
- * PIO Read operation. The contents are used to form the correct *
- * Router Network packet and direct the Crosstalk reply to the *
- * appropriate processor. *
- * *
- ************************************************************************/
- typedef union ii_iprte0a_u {
- shubreg_t ii_iprte0a_regval;
- struct {
- shubreg_t i_rsvd_1 : 54;
- shubreg_t i_widget : 4;
- shubreg_t i_to_cnt : 5;
- shubreg_t i_vld : 1;
- } ii_iprte0a_fld_s;
- } ii_iprte0a_u_t;
- /************************************************************************
- * *
- * There are 8 instances of this register. This register contains *
- * the information that the II has to remember once it has launched a *
- * PIO Read operation. The contents are used to form the correct *
- * Router Network packet and direct the Crosstalk reply to the *
- * appropriate processor. *
- * *
- ************************************************************************/
- typedef union ii_iprte1a_u {
- shubreg_t ii_iprte1a_regval;
- struct {
- shubreg_t i_rsvd_1 : 54;
- shubreg_t i_widget : 4;
- shubreg_t i_to_cnt : 5;
- shubreg_t i_vld : 1;
- } ii_iprte1a_fld_s;
- } ii_iprte1a_u_t;
- /************************************************************************
- * *
- * There are 8 instances of this register. This register contains *
- * the information that the II has to remember once it has launched a *
- * PIO Read operation. The contents are used to form the correct *
- * Router Network packet and direct the Crosstalk reply to the *
- * appropriate processor. *
- * *
- ************************************************************************/
- typedef union ii_iprte2a_u {
- shubreg_t ii_iprte2a_regval;
- struct {
- shubreg_t i_rsvd_1 : 54;
- shubreg_t i_widget : 4;
- shubreg_t i_to_cnt : 5;
- shubreg_t i_vld : 1;