iSeries_setup.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:23k
源码类别:
Linux/Unix编程
开发平台:
Unix_Linux
- /*
- *
- *
- * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
- * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
- *
- * Module name: iSeries_setup.c
- *
- * Description:
- * Architecture- / platform-specific boot-time initialization code for
- * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
- * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
- * <dan@net4x.com>.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <linux/config.h>
- #include <linux/init.h>
- #include <linux/threads.h>
- #include <linux/smp.h>
- #include <linux/param.h>
- #include <linux/string.h>
- #include <linux/bootmem.h>
- #include <linux/blk.h>
- #include <linux/seq_file.h>
- #include <asm/processor.h>
- #include <asm/machdep.h>
- #include <asm/page.h>
- #include <asm/mmu.h>
- #include <asm/pgtable.h>
- #include <asm/mmu_context.h>
- #include <asm/time.h>
- #include "iSeries_setup.h"
- #include <asm/naca.h>
- #include <asm/paca.h>
- #include <asm/iSeries/LparData.h>
- #include <asm/iSeries/HvCallHpt.h>
- #include <asm/iSeries/HvLpConfig.h>
- #include <asm/iSeries/HvCallEvent.h>
- #include <asm/iSeries/HvCallSm.h>
- #include <asm/iSeries/HvCallXm.h>
- #include <asm/iSeries/ItLpQueue.h>
- #include <asm/iSeries/IoHriMainStore.h>
- #include <asm/iSeries/iSeries_proc.h>
- #include <asm/proc_pmc.h>
- #include <asm/perfmon.h>
- #include <asm/iSeries/mf.h>
- /* Function Prototypes */
- extern void abort(void);
- #ifdef CONFIG_PPC_ISERIES
- static void build_iSeries_Memory_Map( void );
- static void setup_iSeries_cache_sizes( void );
- static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
- #endif
- extern void ppcdbg_initialize(void);
- extern void iSeries_pcibios_init(void);
- extern void iSeries_pcibios_fixup(void);
- extern void iSeries_pcibios_fixup_bus(int);
- /* Global Variables */
- static unsigned long procFreqHz = 0;
- static unsigned long procFreqMhz = 0;
- static unsigned long procFreqMhzHundreths = 0;
- static unsigned long tbFreqHz = 0;
- static unsigned long tbFreqMhz = 0;
- static unsigned long tbFreqMhzHundreths = 0;
- int piranha_simulator = 0;
- extern char _end[];
- extern int rd_size; /* Defined in drivers/block/rd.c */
- extern unsigned long klimit;
- extern unsigned long embedded_sysmap_start;
- extern unsigned long embedded_sysmap_end;
- extern unsigned long iSeries_recal_tb;
- extern unsigned long iSeries_recal_titan;
- extern char _stext;
- extern char _etext;
- static int mf_initialized = 0;
- struct MemoryBlock {
- unsigned long absStart;
- unsigned long absEnd;
- unsigned long logicalStart;
- unsigned long logicalEnd;
- };
- /*
- * Process the main store vpd to determine where the holes in memory are
- * and return the number of physical blocks and fill in the array of
- * block data.
- */
- unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
- {
- /* Determine if absolute memory has any
- * holes so that we can interpret the
- * access map we get back from the hypervisor
- * correctly.
- */
- unsigned long holeFirstChunk, holeSizeChunks;
- unsigned long numMemoryBlocks = 1;
- struct IoHriMainStoreSegment4 * msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd;
- unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
- unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
- unsigned long holeSize = holeEnd - holeStart;
- printk("Mainstore_VPD: Condorn");
- mb_array[0].logicalStart = 0;
- mb_array[0].logicalEnd = 0x100000000;
- mb_array[0].absStart = 0;
- mb_array[0].absEnd = 0x100000000;
- if ( holeSize ) {
- numMemoryBlocks = 2;
- holeStart = holeStart & 0x000fffffffffffff;
- holeStart = addr_to_chunk(holeStart);
- holeFirstChunk = holeStart;
- holeSize = addr_to_chunk(holeSize);
- holeSizeChunks = holeSize;
- printk( "Main store hole: start chunk = %0lx, size = %0lx chunksn",
- holeFirstChunk, holeSizeChunks );
- mb_array[0].logicalEnd = holeFirstChunk;
- mb_array[0].absEnd = holeFirstChunk;
- mb_array[1].logicalStart = holeFirstChunk;
- mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
- mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
- mb_array[1].absEnd = 0x100000000;
- }
- return numMemoryBlocks;
- }
- #define MaxSegmentAreas 32
- #define MaxSegmentAdrRangeBlocks 128
- #define MaxAreaRangeBlocks 4
- unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
- {
- struct IoHriMainStoreSegment5 * msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd;
- unsigned long numSegmentBlocks = 0;
- u32 existsBits = msVpdP->msAreaExists;
- unsigned long area_num;
- printk("Mainstore_VPD: Regattan");
- for ( area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
- unsigned long numAreaBlocks;
- struct IoHriMainStoreArea4 * currentArea;
- if ( existsBits & 0x80000000 ) {
- unsigned long block_num;
- currentArea = &msVpdP->msAreaArray[area_num];
- numAreaBlocks = currentArea->numAdrRangeBlocks;
- printk("ms_vpd: processing area %2ld blocks=%ld", area_num, numAreaBlocks);
- for ( block_num = 0; block_num < numAreaBlocks; ++block_num ) {
- /* Process an address range block */
- struct MemoryBlock tempBlock;
- unsigned long i;
- tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
- tempBlock.absEnd = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
- tempBlock.logicalStart = 0;
- tempBlock.logicalEnd = 0;
- printk("n block %ld absStart=%016lx absEnd=%016lx", block_num,
- tempBlock.absStart, tempBlock.absEnd);
- for ( i=0; i<numSegmentBlocks; ++i ) {
- if ( mb_array[i].absStart == tempBlock.absStart )
- break;
- }
- if ( i == numSegmentBlocks ) {
- if ( numSegmentBlocks == max_entries ) {
- panic("iSeries_process_mainstore_vpd: too many memory blocks");
- }
- mb_array[numSegmentBlocks] = tempBlock;
- ++numSegmentBlocks;
- }
- else {
- printk(" (duplicate)");
- }
- }
- printk("n");
- }
- existsBits <<= 1;
- }
- /* Now sort the blocks found into ascending sequence */
- if ( numSegmentBlocks > 1 ) {
- unsigned long m, n;
- for ( m=0; m<numSegmentBlocks-1; ++m ) {
- for ( n=numSegmentBlocks-1; m<n; --n ) {
- if ( mb_array[n].absStart < mb_array[n-1].absStart ) {
- struct MemoryBlock tempBlock;
- tempBlock = mb_array[n];
- mb_array[n] = mb_array[n-1];
- mb_array[n-1] = tempBlock;
- }
- }
- }
- }
- /* Assign "logical" addresses to each block. These
- * addresses correspond to the hypervisor "bitmap" space.
- * Convert all addresses into units of 256K chunks.
- */
- {
- unsigned long i, nextBitmapAddress;
- printk("ms_vpd: %ld sorted memory blocksn", numSegmentBlocks);
- nextBitmapAddress = 0;
- for ( i=0; i<numSegmentBlocks; ++i ) {
- unsigned long length = mb_array[i].absEnd - mb_array[i].absStart;
- mb_array[i].logicalStart = nextBitmapAddress;
- mb_array[i].logicalEnd = nextBitmapAddress + length;
- nextBitmapAddress += length;
- printk(" Bitmap range: %016lx - %016lxn"
- " Absolute range: %016lx - %016lxn",
- mb_array[i].logicalStart, mb_array[i].logicalEnd,
- mb_array[i].absStart, mb_array[i].absEnd);
- mb_array[i].absStart = addr_to_chunk( mb_array[i].absStart & 0x000fffffffffffff );
- mb_array[i].absEnd = addr_to_chunk( mb_array[i].absEnd & 0x000fffffffffffff );
- mb_array[i].logicalStart = addr_to_chunk( mb_array[i].logicalStart );
- mb_array[i].logicalEnd = addr_to_chunk( mb_array[i].logicalEnd );
- }
- }
- return numSegmentBlocks;
- }
- unsigned long iSeries_process_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
- {
- unsigned long i;
- unsigned long mem_blocks = 0;
- if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
- mem_blocks = iSeries_process_Regatta_mainstore_vpd( mb_array, max_entries );
- else
- mem_blocks = iSeries_process_Condor_mainstore_vpd( mb_array, max_entries );
- printk("Mainstore_VPD: numMemoryBlocks = %ld n", mem_blocks);
- for ( i=0; i<mem_blocks; ++i ) {
- printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lxn"
- " abs chunks %016lx - %016lxn",
- i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
- mb_array[i].absStart, mb_array[i].absEnd);
- }
- return mem_blocks;
- }
- /*
- * void __init iSeries_init_early()
- */
- void __init
- iSeries_init_early(void)
- {
- #ifdef CONFIG_PPC_ISERIES
- #if defined(CONFIG_BLK_DEV_INITRD)
- /*
- * If the init RAM disk has been configured and there is
- * a non-zero starting address for it, set it up
- */
- if ( naca->xRamDisk ) {
- initrd_start = (unsigned long)__va(naca->xRamDisk);
- initrd_end = initrd_start + naca->xRamDiskSize * PAGE_SIZE;
- initrd_below_start_ok = 1; // ramdisk in kernel space
- ROOT_DEV = MKDEV( RAMDISK_MAJOR, 0 );
- if ( ((rd_size*1024)/PAGE_SIZE) < naca->xRamDiskSize )
- rd_size = (naca->xRamDiskSize*PAGE_SIZE)/1024;
- } else
- #endif /* CONFIG_BLK_DEV_INITRD */
- {
- /* ROOT_DEV = MKDEV( VIODASD_MAJOR, 1 ); */
- }
- iSeries_recal_tb = get_tb();
- iSeries_recal_titan = HvCallXm_loadTod();
- ppc_md.setup_arch = iSeries_setup_arch;
- ppc_md.setup_residual = iSeries_setup_residual;
- ppc_md.get_cpuinfo = iSeries_get_cpuinfo;
- ppc_md.irq_cannonicalize = NULL;
- ppc_md.init_IRQ = iSeries_init_IRQ;
- ppc_md.init_ras_IRQ = NULL;
- ppc_md.get_irq = iSeries_get_irq;
- ppc_md.init = NULL;
- ppc_md.pcibios_fixup = iSeries_pcibios_fixup;
- ppc_md.pcibios_fixup_bus = iSeries_pcibios_fixup_bus;
- ppc_md.restart = iSeries_restart;
- ppc_md.power_off = iSeries_power_off;
- ppc_md.halt = iSeries_halt;
- ppc_md.time_init = NULL;
- ppc_md.get_boot_time = iSeries_get_boot_time;
- ppc_md.set_rtc_time = iSeries_set_rtc_time;
- ppc_md.get_rtc_time = iSeries_get_rtc_time;
- ppc_md.calibrate_decr = iSeries_calibrate_decr;
- ppc_md.progress = iSeries_progress;
- ppc_md.kbd_setkeycode = NULL;
- ppc_md.kbd_getkeycode = NULL;
- ppc_md.kbd_translate = NULL;
- ppc_md.kbd_unexpected_up = NULL;
- ppc_md.kbd_leds = NULL;
- ppc_md.kbd_init_hw = NULL;
- #if defined(CONFIG_MAGIC_SYSRQ)
- ppc_md.ppc_kbd_sysrq_xlate = NULL;
- #endif
- hpte_init_iSeries();
- tce_init_iSeries();
- /* Initialize the table which translate Linux physical addresses to
- * AS/400 absolute addresses
- */
- build_iSeries_Memory_Map();
- setup_iSeries_cache_sizes();
- /* Initialize machine-dependency vectors */
- #ifdef CONFIG_SMP
- smp_init_iSeries();
- #endif
- if ( itLpNaca.xPirEnvironMode == 0 )
- piranha_simulator = 1;
- #endif
- }
- /*
- * void __init iSeries_init()
- */
- void __init
- iSeries_init(unsigned long r3, unsigned long r4, unsigned long r5,
- unsigned long r6, unsigned long r7)
- {
- /* Associate Lp Event Queue 0 with processor 0 */
- HvCallEvent_setLpEventQueueInterruptProc( 0, 0 );
- {
- /* copy the command line parameter from the primary VSP */
- char *p, *q;
- HvCallEvent_dmaToSp( cmd_line,
- 2*64*1024,
- 256,
- HvLpDma_Direction_RemoteToLocal );
- p = q = cmd_line + 255;
- while( p > cmd_line ) {
- if ((*p == 0) || (*p == ' ') || (*p == 'n'))
- --p;
- else
- break;
- }
- if ( p < q )
- *(p+1) = 0;
- }
- iSeries_proc_early_init();
- mf_init();
- mf_initialized = 1;
- mb();
- iSeries_proc_callback( &pmc_proc_init );
- }
- #ifdef CONFIG_PPC_ISERIES
- /*
- * The iSeries may have very large memories ( > 128 GB ) and a partition
- * may get memory in "chunks" that may be anywhere in the 2**52 real
- * address space. The chunks are 256K in size. To map this to the
- * memory model Linux expects, the AS/400 specific code builds a
- * translation table to translate what Linux thinks are "physical"
- * addresses to the actual real addresses. This allows us to make
- * it appear to Linux that we have contiguous memory starting at
- * physical address zero while in fact this could be far from the truth.
- * To avoid confusion, I'll let the words physical and/or real address
- * apply to the Linux addresses while I'll use "absolute address" to
- * refer to the actual hardware real address.
- *
- * build_iSeries_Memory_Map gets information from the Hypervisor and
- * looks at the Main Store VPD to determine the absolute addresses
- * of the memory that has been assigned to our partition and builds
- * a table used to translate Linux's physical addresses to these
- * absolute addresses. Absolute addresses are needed when
- * communicating with the hypervisor (e.g. to build HPT entries)
- */
- static void __init build_iSeries_Memory_Map(void)
- {
- u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
- u32 nextPhysChunk;
- u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
- u32 num_ptegs;
- u32 totalChunks,moreChunks;
- u32 currChunk, thisChunk, absChunk;
- u32 currDword;
- u32 chunkBit;
- u64 map;
- struct MemoryBlock mb[32];
- unsigned long numMemoryBlocks, curBlock;
- /* Chunk size on iSeries is 256K bytes */
- totalChunks = (u32)HvLpConfig_getMsChunks();
- klimit = msChunks_alloc(klimit, totalChunks, 1UL<<18);
- /* Get absolute address of our load area
- * and map it to physical address 0
- * This guarantees that the loadarea ends up at physical 0
- * otherwise, it might not be returned by PLIC as the first
- * chunks
- */
- loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
- loadAreaSize = itLpNaca.xLoadAreaChunks;
- /* Only add the pages already mapped here.
- * Otherwise we might add the hpt pages
- * The rest of the pages of the load area
- * aren't in the HPT yet and can still
- * be assigned an arbitrary physical address
- */
- if ( (loadAreaSize * 64) > HvPagesToMap )
- loadAreaSize = HvPagesToMap / 64;
- loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
- /* TODO Do we need to do something if the HPT is in the 64MB load area?
- * This would be required if the itLpNaca.xLoadAreaChunks includes
- * the HPT size
- */
- printk( "Mapping load area - physical addr = 0000000000000000n"
- " absolute addr = %016lxn",
- chunk_to_addr(loadAreaFirstChunk) );
- printk( "Load area size %dKn", loadAreaSize*256 );
- for ( nextPhysChunk = 0;
- nextPhysChunk < loadAreaSize;
- ++nextPhysChunk ) {
- msChunks.abs[nextPhysChunk] = loadAreaFirstChunk+nextPhysChunk;
- }
- /* Get absolute address of our HPT and remember it so
- * we won't map it to any physical address
- */
- hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
- hptSizePages = (u32)(HvCallHpt_getHptPages());
- hptSizeChunks = hptSizePages >> (msChunks.chunk_shift-PAGE_SHIFT);
- hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
- printk( "HPT absolute addr = %016lx, size = %dKn",
- chunk_to_addr(hptFirstChunk), hptSizeChunks*256 );
- /* Fill in the htab_data structure */
- /* Fill in size of hashed page table */
- num_ptegs = hptSizePages * (PAGE_SIZE/(sizeof(HPTE)*HPTES_PER_GROUP));
- htab_data.htab_num_ptegs = num_ptegs;
- htab_data.htab_hash_mask = num_ptegs - 1;
- /* The actual hashed page table is in the hypervisor, we have no direct access */
- htab_data.htab = NULL;
- /* Determine if absolute memory has any
- * holes so that we can interpret the
- * access map we get back from the hypervisor
- * correctly.
- */
- numMemoryBlocks = iSeries_process_mainstore_vpd( mb, 32 );
- /* Process the main store access map from the hypervisor
- * to build up our physical -> absolute translation table
- */
- curBlock = 0;
- currChunk = 0;
- currDword = 0;
- moreChunks = totalChunks;
- while ( moreChunks ) {
- map = HvCallSm_get64BitsOfAccessMap( itLpNaca.xLpIndex,
- currDword );
- thisChunk = currChunk;
- while ( map ) {
- chunkBit = map >> 63;
- map <<= 1;
- if ( chunkBit ) {
- --moreChunks;
- while ( thisChunk >= mb[curBlock].logicalEnd ) {
- ++curBlock;
- if ( curBlock >= numMemoryBlocks )
- panic("out of memory blocks");
- }
- if ( thisChunk < mb[curBlock].logicalStart )
- panic("memory block error");
- absChunk = mb[curBlock].absStart + ( thisChunk - mb[curBlock].logicalStart );
- if ( ( ( absChunk < hptFirstChunk ) ||
- ( absChunk > hptLastChunk ) ) &&
- ( ( absChunk < loadAreaFirstChunk ) ||
- ( absChunk > loadAreaLastChunk ) ) ) {
- msChunks.abs[nextPhysChunk] = absChunk;
- ++nextPhysChunk;
- }
- }
- ++thisChunk;
- }
- ++currDword;
- currChunk += 64;
- }
- /* main store size (in chunks) is
- * totalChunks - hptSizeChunks
- * which should be equal to
- * nextPhysChunk
- */
- naca->physicalMemorySize = chunk_to_addr(nextPhysChunk);
- /* Bolt kernel mappings for all of memory */
- iSeries_bolt_kernel( 0, naca->physicalMemorySize );
- lmb_init();
- lmb_add( 0, naca->physicalMemorySize );
- lmb_analyze(); /* ?? */
- lmb_reserve( 0, __pa(klimit));
- /*
- * Hardcode to GP size. I am not sure where to get this info. DRENG
- */
- naca->slb_size = 64;
- }
- /*
- * Set up the variables that describe the cache line sizes
- * for this machine.
- */
- static void __init setup_iSeries_cache_sizes(void)
- {
- unsigned i,n;
- unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
- naca->iCacheL1LineSize = xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
- naca->dCacheL1LineSize = xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
- naca->iCacheL1LinesPerPage = PAGE_SIZE / naca->iCacheL1LineSize;
- naca->dCacheL1LinesPerPage = PAGE_SIZE / naca->dCacheL1LineSize;
- i = naca->iCacheL1LineSize;
- n = 0;
- while ((i=(i/2))) ++n;
- naca->iCacheL1LogLineSize = n;
- i = naca->dCacheL1LineSize;
- n = 0;
- while ((i=(i/2))) ++n;
- naca->dCacheL1LogLineSize = n;
- printk( "D-cache line size = %d (log = %d)n",
- (unsigned)naca->dCacheL1LineSize,
- (unsigned)naca->dCacheL1LogLineSize );
- printk( "I-cache line size = %d (log = %d)n",
- (unsigned)naca->iCacheL1LineSize,
- (unsigned)naca->iCacheL1LogLineSize );
- }
- /*
- * Bolt the kernel addr space into the HPT
- */
- static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
- {
- unsigned long pa;
- unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
- HPTE hpte;
- for (pa=saddr; pa < eaddr ;pa+=PAGE_SIZE) {
- unsigned long ea = (unsigned long)__va(pa);
- unsigned long vsid = get_kernel_vsid( ea );
- unsigned long va = ( vsid << 28 ) | ( pa & 0xfffffff );
- unsigned long vpn = va >> PAGE_SHIFT;
- unsigned long slot = HvCallHpt_findValid( &hpte, vpn );
- if (hpte.dw0.dw0.v) {
- /* HPTE exists, so just bolt it */
- HvCallHpt_setSwBits(slot, 0x10, 0);
- } else {
- /* No HPTE exists, so create a new bolted one */
- make_pte(NULL, va, (unsigned long)__v2a(ea),
- mode_rw, 0, 0);
- }
- }
- }
- #endif /* CONFIG_PPC_ISERIES */
- extern unsigned long ppc_proc_freq;
- extern unsigned long ppc_tb_freq;
- /*
- * Document me.
- */
- void __init
- iSeries_setup_arch(void)
- {
- void * eventStack;
- unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
- /* Setup the Lp Event Queue */
- /* Allocate a page for the Event Stack
- * The hypervisor wants the absolute real address, so
- * we subtract out the KERNELBASE and add in the
- * absolute real address of the kernel load area
- */
- eventStack = alloc_bootmem_pages( LpEventStackSize );
- memset( eventStack, 0, LpEventStackSize );
- /* Invoke the hypervisor to initialize the event stack */
- HvCallEvent_setLpEventStack( 0, eventStack, LpEventStackSize );
- /* Initialize fields in our Lp Event Queue */
- xItLpQueue.xSlicEventStackPtr = (char *)eventStack;
- xItLpQueue.xSlicCurEventPtr = (char *)eventStack;
- xItLpQueue.xSlicLastValidEventPtr = (char *)eventStack +
- (LpEventStackSize - LpEventMaxSize);
- xItLpQueue.xIndex = 0;
- /* Compute processor frequency */
- procFreqHz = (((1UL<<34) * 1000000) / xIoHriProcessorVpd[procIx].xProcFreq );
- procFreqMhz = procFreqHz / 1000000;
- procFreqMhzHundreths = (procFreqHz/10000) - (procFreqMhz*100);
- ppc_proc_freq = procFreqHz;
- /* Compute time base frequency */
- tbFreqHz = (((1UL<<32) * 1000000) / xIoHriProcessorVpd[procIx].xTimeBaseFreq );
- tbFreqMhz = tbFreqHz / 1000000;
- tbFreqMhzHundreths = (tbFreqHz/10000) - (tbFreqMhz*100);
- ppc_tb_freq = tbFreqHz;
- printk("Max logical processors = %dn",
- itVpdAreas.xSlicMaxLogicalProcs );
- printk("Max physical processors = %dn",
- itVpdAreas.xSlicMaxPhysicalProcs );
- printk("Processor frequency = %lu.%02lun",
- procFreqMhz,
- procFreqMhzHundreths );
- printk("Time base frequency = %lu.%02lun",
- tbFreqMhz,
- tbFreqMhzHundreths );
- printk("Processor version = %xn",
- xIoHriProcessorVpd[procIx].xPVR );
- }
- /*
- * int as400_setup_residual()
- *
- * Description:
- * This routine pretty-prints CPU information gathered from the VPD
- * for use in /proc/cpuinfo
- *
- * Input(s):
- * *buffer - Buffer into which CPU data is to be printed.
- *
- * Output(s):
- * *buffer - Buffer with CPU data.
- *
- * Returns:
- * The number of bytes copied into 'buffer' if OK, otherwise zero or less
- * on error.
- */
- void iSeries_setup_residual(struct seq_file *m)
- {
- seq_printf(m,"clocktt: %lu.%02luMhzn",
- procFreqMhz, procFreqMhzHundreths );
- seq_printf(m,"time baset: %lu.%02luMHzn",
- tbFreqMhz, tbFreqMhzHundreths );
- seq_printf(m,"i-cachett: %dn",
- naca->iCacheL1LineSize);
- seq_printf(m,"d-cachett: %dn",
- naca->dCacheL1LineSize);
- }
- void iSeries_get_cpuinfo(struct seq_file *m)
- {
- seq_printf(m,"machinett: 64-bit iSeries Logical Partitionn");
- }
- /*
- * Document me.
- * and Implement me.
- */
- int
- iSeries_get_irq(struct pt_regs *regs)
- {
- /* -2 means ignore this interrupt */
- return -2;
- }
- /*
- * Document me.
- */
- void
- iSeries_restart(char *cmd)
- {
- mf_reboot();
- }
- /*
- * Document me.
- */
- void
- iSeries_power_off(void)
- {
- mf_powerOff();
- }
- /*
- * Document me.
- */
- void
- iSeries_halt(void)
- {
- mf_powerOff();
- }
- /*
- * Nothing to do here.
- */
- void __init
- iSeries_time_init(void)
- {
- /* Nothing to do */
- }
- /* JDH Hack */
- unsigned long jdh_time = 0;
- extern void setup_default_decr(void);
- /*
- * void __init iSeries_calibrate_decr()
- *
- * Description:
- * This routine retrieves the internal processor frequency from the VPD,
- * and sets up the kernel timer decrementer based on that value.
- *
- */
- void __init
- iSeries_calibrate_decr(void)
- {
- unsigned long cyclesPerUsec;
- struct div_result divres;
- /* Compute decrementer (and TB) frequency
- * in cycles/sec
- */
- cyclesPerUsec = ppc_tb_freq / 1000000; /* cycles / usec */
- /* Set the amount to refresh the decrementer by. This
- * is the number of decrementer ticks it takes for
- * 1/HZ seconds.
- */
- tb_ticks_per_jiffy = ppc_tb_freq / HZ;
- #if 0
- /* TEST CODE FOR ADJTIME */
- tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
- /* END OF TEST CODE */
- #endif
- /*
- * tb_ticks_per_sec = freq; would give better accuracy
- * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
- * that jiffies (and xtime) will match the time returned
- * by do_gettimeofday.
- */
- tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
- tb_ticks_per_usec = cyclesPerUsec;
- div128_by_32( 1024*1024, 0, tb_ticks_per_sec, &divres );
- tb_to_xs = divres.result_low;
- setup_default_decr();
- }
- void __init
- iSeries_progress( char * st, unsigned short code )
- {
- printk( "Progress: [%04x] - %sn", (unsigned)code, st );
- if ( !piranha_simulator && mf_initialized ) {
- if (code != 0xffff)
- mf_displayProgress( code );
- else
- mf_clearSrc();
- }
- }
- void iSeries_fixup_klimit(void)
- {
- /* Change klimit to take into account any ram disk that may be included */
- if (naca->xRamDisk)
- klimit = KERNELBASE + (u64)naca->xRamDisk + (naca->xRamDiskSize * PAGE_SIZE);
- else {
- /* No ram disk was included - check and see if there was an embedded system map */
- /* Change klimit to take into account any embedded system map */
- if (embedded_sysmap_end)
- klimit = KERNELBASE + ((embedded_sysmap_end+4095) & 0xfffffffffffff000);
- }
- }
English
