bbc_envctrl.c
上传用户:jlfgdled
上传日期:2013-04-10
资源大小:33168k
文件大小:17k
- /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
- * bbc_envctrl.c: UltraSPARC-III environment control driver.
- *
- * Copyright (C) 2001 David S. Miller (davem@redhat.com)
- */
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/slab.h>
- #include <asm/oplib.h>
- #include <asm/ebus.h>
- #define __KERNEL_SYSCALLS__
- static int errno;
- #include <asm/unistd.h>
- #include "bbc_i2c.h"
- #include "max1617.h"
- #undef ENVCTRL_TRACE
- /* WARNING: Making changes to this driver is very dangerous.
- * If you misprogram the sensor chips they can
- * cut the power on you instantly.
- */
- /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
- * Both are implemented using max1617 i2c devices. Each max1617
- * monitors 2 temperatures, one for one of the cpu dies and the other
- * for the ambient temperature.
- *
- * The max1617 is capable of being programmed with power-off
- * temperature values, one low limit and one high limit. These
- * can be controlled independantly for the cpu or ambient temperature.
- * If a limit is violated, the power is simply shut off. The frequency
- * with which the max1617 does temperature sampling can be controlled
- * as well.
- *
- * Three fans exist inside the machine, all three are controlled with
- * an i2c digital to analog converter. There is a fan directed at the
- * two processor slots, another for the rest of the enclosure, and the
- * third is for the power supply. The first two fans may be speed
- * controlled by changing the voltage fed to them. The third fan may
- * only be completely off or on. The third fan is meant to only be
- * disabled/enabled when entering/exiting the lowest power-saving
- * mode of the machine.
- *
- * An environmental control kernel thread periodically monitors all
- * temperature sensors. Based upon the samples it will adjust the
- * fan speeds to try and keep the system within a certain temperature
- * range (the goal being to make the fans as quiet as possible without
- * allowing the system to get too hot).
- *
- * If the temperature begins to rise/fall outside of the acceptable
- * operating range, a periodic warning will be sent to the kernel log.
- * The fans will be put on full blast to attempt to deal with this
- * situation. After exceeding the acceptable operating range by a
- * certain threshold, the kernel thread will shut down the system.
- * Here, the thread is attempting to shut the machine down cleanly
- * before the hardware based power-off event is triggered.
- */
- /* These settings are in celcius. We use these defaults only
- * if we cannot interrogate the cpu-fru SEEPROM.
- */
- struct temp_limits {
- s8 high_pwroff, high_shutdown, high_warn;
- s8 low_warn, low_shutdown, low_pwroff;
- };
- static struct temp_limits cpu_temp_limits[2] = {
- { 100, 85, 80, 5, -5, -10 },
- { 100, 85, 80, 5, -5, -10 },
- };
- static struct temp_limits amb_temp_limits[2] = {
- { 65, 55, 40, 5, -5, -10 },
- { 65, 55, 40, 5, -5, -10 },
- };
- enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
- struct bbc_cpu_temperature {
- struct bbc_cpu_temperature *next;
- struct bbc_i2c_client *client;
- int index;
- /* Current readings, and history. */
- s8 curr_cpu_temp;
- s8 curr_amb_temp;
- s8 prev_cpu_temp;
- s8 prev_amb_temp;
- s8 avg_cpu_temp;
- s8 avg_amb_temp;
- int sample_tick;
- enum fan_action fan_todo[2];
- #define FAN_AMBIENT 0
- #define FAN_CPU 1
- };
- struct bbc_cpu_temperature *all_bbc_temps;
- struct bbc_fan_control {
- struct bbc_fan_control *next;
- struct bbc_i2c_client *client;
- int index;
- int psupply_fan_on;
- int cpu_fan_speed;
- int system_fan_speed;
- };
- struct bbc_fan_control *all_bbc_fans;
- #define CPU_FAN_REG 0xf0
- #define SYS_FAN_REG 0xf2
- #define PSUPPLY_FAN_REG 0xf4
- #define FAN_SPEED_MIN 0x0c
- #define FAN_SPEED_MAX 0x3f
- #define PSUPPLY_FAN_ON 0x1f
- #define PSUPPLY_FAN_OFF 0x00
- static void set_fan_speeds(struct bbc_fan_control *fp)
- {
- /* Put temperatures into range so we don't mis-program
- * the hardware.
- */
- if (fp->cpu_fan_speed < FAN_SPEED_MIN)
- fp->cpu_fan_speed = FAN_SPEED_MIN;
- if (fp->cpu_fan_speed > FAN_SPEED_MAX)
- fp->cpu_fan_speed = FAN_SPEED_MAX;
- if (fp->system_fan_speed < FAN_SPEED_MIN)
- fp->system_fan_speed = FAN_SPEED_MIN;
- if (fp->system_fan_speed > FAN_SPEED_MAX)
- fp->system_fan_speed = FAN_SPEED_MAX;
- #ifdef ENVCTRL_TRACE
- printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)n",
- fp->index,
- fp->cpu_fan_speed, fp->system_fan_speed);
- #endif
- bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
- bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
- bbc_i2c_writeb(fp->client,
- (fp->psupply_fan_on ?
- PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
- PSUPPLY_FAN_REG);
- }
- static void get_current_temps(struct bbc_cpu_temperature *tp)
- {
- tp->prev_amb_temp = tp->curr_amb_temp;
- bbc_i2c_readb(tp->client,
- (unsigned char *) &tp->curr_amb_temp,
- MAX1617_AMB_TEMP);
- tp->prev_cpu_temp = tp->curr_cpu_temp;
- bbc_i2c_readb(tp->client,
- (unsigned char *) &tp->curr_cpu_temp,
- MAX1617_CPU_TEMP);
- #ifdef ENVCTRL_TRACE
- printk("temp%d: cpu(%d C) amb(%d C)n",
- tp->index,
- (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
- #endif
- }
- static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
- {
- static int shutting_down = 0;
- static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
- char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
- char *type = "???";
- s8 val = -1;
- if (shutting_down != 0)
- return;
- if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
- tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
- type = "ambient";
- val = tp->curr_amb_temp;
- } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
- tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
- type = "CPU";
- val = tp->curr_cpu_temp;
- }
- printk(KERN_CRIT "temp%d: Outside of safe %s "
- "operating temperature, %d C.n",
- tp->index, type, val);
- printk(KERN_CRIT "kenvctrld: Shutting down the system now.n");
- shutting_down = 1;
- if (execve("/sbin/shutdown", argv, envp) < 0)
- printk(KERN_CRIT "envctrl: shutdown execution failedn");
- }
- #define WARN_INTERVAL (30 * HZ)
- static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
- {
- int ret = 0;
- if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
- if (tp->curr_amb_temp >=
- amb_temp_limits[tp->index].high_warn) {
- printk(KERN_WARNING "temp%d: "
- "Above safe ambient operating temperature, %d C.n",
- tp->index, (int) tp->curr_amb_temp);
- ret = 1;
- } else if (tp->curr_amb_temp <
- amb_temp_limits[tp->index].low_warn) {
- printk(KERN_WARNING "temp%d: "
- "Below safe ambient operating temperature, %d C.n",
- tp->index, (int) tp->curr_amb_temp);
- ret = 1;
- }
- if (ret)
- *last_warn = jiffies;
- } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
- tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
- ret = 1;
- /* Now check the shutdown limits. */
- if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
- tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
- do_envctrl_shutdown(tp);
- ret = 1;
- }
- if (ret) {
- tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
- } else if ((tick & (8 - 1)) == 0) {
- s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
- s8 amb_goal_lo;
- amb_goal_lo = amb_goal_hi - 3;
- /* We do not try to avoid 'too cold' events. Basically we
- * only try to deal with over-heating and fan noise reduction.
- */
- if (tp->avg_amb_temp < amb_goal_hi) {
- if (tp->avg_amb_temp >= amb_goal_lo)
- tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
- else
- tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
- } else {
- tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
- }
- } else {
- tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
- }
- }
- static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
- {
- int ret = 0;
- if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
- if (tp->curr_cpu_temp >=
- cpu_temp_limits[tp->index].high_warn) {
- printk(KERN_WARNING "temp%d: "
- "Above safe CPU operating temperature, %d C.n",
- tp->index, (int) tp->curr_cpu_temp);
- ret = 1;
- } else if (tp->curr_cpu_temp <
- cpu_temp_limits[tp->index].low_warn) {
- printk(KERN_WARNING "temp%d: "
- "Below safe CPU operating temperature, %d C.n",
- tp->index, (int) tp->curr_cpu_temp);
- ret = 1;
- }
- if (ret)
- *last_warn = jiffies;
- } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
- tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
- ret = 1;
- /* Now check the shutdown limits. */
- if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
- tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
- do_envctrl_shutdown(tp);
- ret = 1;
- }
- if (ret) {
- tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
- } else if ((tick & (8 - 1)) == 0) {
- s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
- s8 cpu_goal_lo;
- cpu_goal_lo = cpu_goal_hi - 3;
- /* We do not try to avoid 'too cold' events. Basically we
- * only try to deal with over-heating and fan noise reduction.
- */
- if (tp->avg_cpu_temp < cpu_goal_hi) {
- if (tp->avg_cpu_temp >= cpu_goal_lo)
- tp->fan_todo[FAN_CPU] = FAN_SAME;
- else
- tp->fan_todo[FAN_CPU] = FAN_SLOWER;
- } else {
- tp->fan_todo[FAN_CPU] = FAN_FASTER;
- }
- } else {
- tp->fan_todo[FAN_CPU] = FAN_SAME;
- }
- }
- static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
- {
- tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
- tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
- analyze_ambient_temp(tp, last_warn, tp->sample_tick);
- analyze_cpu_temp(tp, last_warn, tp->sample_tick);
- tp->sample_tick++;
- }
- static enum fan_action prioritize_fan_action(int which_fan)
- {
- struct bbc_cpu_temperature *tp;
- enum fan_action decision = FAN_STATE_MAX;
- /* Basically, prioritize what the temperature sensors
- * recommend we do, and perform that action on all the
- * fans.
- */
- for (tp = all_bbc_temps; tp; tp = tp->next) {
- if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
- decision = FAN_FULLBLAST;
- break;
- }
- if (tp->fan_todo[which_fan] == FAN_SAME &&
- decision != FAN_FASTER)
- decision = FAN_SAME;
- else if (tp->fan_todo[which_fan] == FAN_FASTER)
- decision = FAN_FASTER;
- else if (decision != FAN_FASTER &&
- decision != FAN_SAME &&
- tp->fan_todo[which_fan] == FAN_SLOWER)
- decision = FAN_SLOWER;
- }
- if (decision == FAN_STATE_MAX)
- decision = FAN_SAME;
- return decision;
- }
- static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
- {
- enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
- int ret;
- if (decision == FAN_SAME)
- return 0;
- ret = 1;
- if (decision == FAN_FULLBLAST) {
- if (fp->system_fan_speed >= FAN_SPEED_MAX)
- ret = 0;
- else
- fp->system_fan_speed = FAN_SPEED_MAX;
- } else {
- if (decision == FAN_FASTER) {
- if (fp->system_fan_speed >= FAN_SPEED_MAX)
- ret = 0;
- else
- fp->system_fan_speed += 2;
- } else {
- int orig_speed = fp->system_fan_speed;
- if (orig_speed <= FAN_SPEED_MIN ||
- orig_speed <= (fp->cpu_fan_speed - 3))
- ret = 0;
- else
- fp->system_fan_speed -= 1;
- }
- }
- return ret;
- }
- static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
- {
- enum fan_action decision = prioritize_fan_action(FAN_CPU);
- int ret;
- if (decision == FAN_SAME)
- return 0;
- ret = 1;
- if (decision == FAN_FULLBLAST) {
- if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
- ret = 0;
- else
- fp->cpu_fan_speed = FAN_SPEED_MAX;
- } else {
- if (decision == FAN_FASTER) {
- if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
- ret = 0;
- else {
- fp->cpu_fan_speed += 2;
- if (fp->system_fan_speed <
- (fp->cpu_fan_speed - 3))
- fp->system_fan_speed =
- fp->cpu_fan_speed - 3;
- }
- } else {
- if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
- ret = 0;
- else
- fp->cpu_fan_speed -= 1;
- }
- }
- return ret;
- }
- static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
- {
- int new;
- new = maybe_new_ambient_fan_speed(fp);
- new |= maybe_new_cpu_fan_speed(fp);
- if (new)
- set_fan_speeds(fp);
- }
- static void fans_full_blast(void)
- {
- struct bbc_fan_control *fp;
- /* Since we will not be monitoring things anymore, put
- * the fans on full blast.
- */
- for (fp = all_bbc_fans; fp; fp = fp->next) {
- fp->cpu_fan_speed = FAN_SPEED_MAX;
- fp->system_fan_speed = FAN_SPEED_MAX;
- fp->psupply_fan_on = 1;
- set_fan_speeds(fp);
- }
- }
- #define POLL_INTERVAL (5 * HZ)
- static unsigned long last_warning_jiffies;
- static struct task_struct *kenvctrld_task;
- static int kenvctrld(void *__unused)
- {
- daemonize();
- strcpy(current->comm, "kenvctrld");
- kenvctrld_task = current;
- printk(KERN_INFO "bbc_envctrl: kenvctrld starting...n");
- last_warning_jiffies = jiffies - WARN_INTERVAL;
- for (;;) {
- struct bbc_cpu_temperature *tp;
- struct bbc_fan_control *fp;
- current->state = TASK_INTERRUPTIBLE;
- schedule_timeout(POLL_INTERVAL);
- current->state = TASK_RUNNING;
- if (signal_pending(current))
- break;
- for (tp = all_bbc_temps; tp; tp = tp->next) {
- get_current_temps(tp);
- analyze_temps(tp, &last_warning_jiffies);
- }
- for (fp = all_bbc_fans; fp; fp = fp->next)
- maybe_new_fan_speeds(fp);
- }
- printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...n");
- fans_full_blast();
- return 0;
- }
- static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
- {
- struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
- if (!tp)
- return;
- memset(tp, 0, sizeof(*tp));
- tp->client = bbc_i2c_attach(echild);
- if (!tp->client) {
- kfree(tp);
- return;
- }
- tp->index = temp_idx;
- {
- struct bbc_cpu_temperature **tpp = &all_bbc_temps;
- while (*tpp)
- tpp = &((*tpp)->next);
- tp->next = NULL;
- *tpp = tp;
- }
- /* Tell it to convert once every 5 seconds, clear all cfg
- * bits.
- */
- bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
- bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
- /* Program the hard temperature limits into the chip. */
- bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
- MAX1617_WR_AMB_HIGHLIM);
- bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
- MAX1617_WR_AMB_LOWLIM);
- bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
- MAX1617_WR_CPU_HIGHLIM);
- bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
- MAX1617_WR_CPU_LOWLIM);
- get_current_temps(tp);
- tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
- tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
- tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
- tp->fan_todo[FAN_CPU] = FAN_SAME;
- }
- static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
- {
- struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
- if (!fp)
- return;
- memset(fp, 0, sizeof(*fp));
- fp->client = bbc_i2c_attach(echild);
- if (!fp->client) {
- kfree(fp);
- return;
- }
- fp->index = fan_idx;
- {
- struct bbc_fan_control **fpp = &all_bbc_fans;
- while (*fpp)
- fpp = &((*fpp)->next);
- fp->next = NULL;
- *fpp = fp;
- }
- /* The i2c device controlling the fans is write-only.
- * So the only way to keep track of the current power
- * level fed to the fans is via software. Choose half
- * power for cpu/system and 'on' fo the powersupply fan
- * and set it now.
- */
- fp->psupply_fan_on = 1;
- fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
- fp->cpu_fan_speed += FAN_SPEED_MIN;
- fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
- fp->system_fan_speed += FAN_SPEED_MIN;
- set_fan_speeds(fp);
- }
- void bbc_envctrl_init(void)
- {
- struct linux_ebus_child *echild;
- int temp_index = 0;
- int fan_index = 0;
- int devidx = 0;
- while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
- if (!strcmp(echild->prom_name, "temperature"))
- attach_one_temp(echild, temp_index++);
- if (!strcmp(echild->prom_name, "fan-control"))
- attach_one_fan(echild, fan_index++);
- }
- if (temp_index != 0 && fan_index != 0)
- kernel_thread(kenvctrld, NULL, CLONE_FS | CLONE_FILES);
- }
- static void destroy_one_temp(struct bbc_cpu_temperature *tp)
- {
- bbc_i2c_detach(tp->client);
- kfree(tp);
- }
- static void destroy_one_fan(struct bbc_fan_control *fp)
- {
- bbc_i2c_detach(fp->client);
- kfree(fp);
- }
- void bbc_envctrl_cleanup(void)
- {
- struct bbc_cpu_temperature *tp;
- struct bbc_fan_control *fp;
- if (kenvctrld_task != NULL) {
- force_sig(SIGKILL, kenvctrld_task);
- for (;;) {
- struct task_struct *p;
- int found = 0;
- read_lock(&tasklist_lock);
- for_each_task(p) {
- if (p == kenvctrld_task) {
- found = 1;
- break;
- }
- }
- read_unlock(&tasklist_lock);
- if (!found)
- break;
- current->state = TASK_INTERRUPTIBLE;
- schedule_timeout(HZ);
- current->state = TASK_RUNNING;
- }
- kenvctrld_task = NULL;
- }
- tp = all_bbc_temps;
- while (tp != NULL) {
- struct bbc_cpu_temperature *next = tp->next;
- destroy_one_temp(tp);
- tp = next;
- }
- all_bbc_temps = NULL;
- fp = all_bbc_fans;
- while (fp != NULL) {
- struct bbc_fan_control *next = fp->next;
- destroy_one_fan(fp);
- fp = next;
- }
- all_bbc_fans = NULL;
- }