quicksort.c
上传用户:shenzhenrh
上传日期:2013-05-12
资源大小:2904k
文件大小:8k
- /* Copyright (C) 1991, 1992, 1996, 1997 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If not,
- write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
- #include <misc.h>
- /* Byte-wise swap two items of size SIZE. */
- #define SWAP(a, b, size)
- do
- {
- register size_t __size = (size);
- register char *__a = (a), *__b = (b);
- do
- {
- char __tmp = *__a;
- *__a++ = *__b;
- *__b++ = __tmp;
- } while (--__size > 0);
- } while (0)
- /* Discontinue quicksort algorithm when partition gets below this size.
- This particular magic number was chosen to work best on a Sun 4/260. */
- #define MAX_THRESH 4
- /* Stack node declarations used to store unfulfilled partition obligations. */
- typedef struct
- {
- char *lo;
- char *hi;
- } stack_node;
- /* The next 4 #defines implement a very fast in-line stack abstraction. */
- #define STACK_SIZE (8 * sizeof(unsigned long int))
- #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
- #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
- #define STACK_NOT_EMPTY (stack < top)
- /* Order size using quicksort. This implementation incorporates
- four optimizations discussed in Sedgewick:
- 1. Non-recursive, using an explicit stack of pointer that store the
- next array partition to sort. To save time, this maximum amount
- of space required to store an array of MAX_INT is allocated on the
- stack. Assuming a 32-bit integer, this needs only 32 *
- sizeof(stack_node) == 136 bits. Pretty cheap, actually.
- 2. Chose the pivot element using a median-of-three decision tree.
- This reduces the probability of selecting a bad pivot value and
- eliminates certain extraneous comparisons.
- 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
- insertion sort to order the MAX_THRESH items within each partition.
- This is a big win, since insertion sort is faster for small, mostly
- sorted array segments.
- 4. The larger of the two sub-partitions is always pushed onto the
- stack first, with the algorithm then concentrating on the
- smaller partition. This *guarantees* no more than log (n)
- stack size is needed (actually O(1) in this case)! */
- void
- quicksort (pbase, total_elems, size, cmp)
- void *const pbase;
- size_t total_elems;
- size_t size;
- quicksort_compar_fn_t cmp;
- {
- register char *base_ptr = (char *) pbase;
- /* Allocating SIZE bytes for a pivot buffer facilitates a better
- algorithm below since we can do comparisons directly on the pivot. */
- char pivot_buffer[size];
- const size_t max_thresh = MAX_THRESH * size;
- if (total_elems == 0)
- /* Avoid lossage with unsigned arithmetic below. */
- return;
- if (total_elems > MAX_THRESH)
- {
- char *lo = base_ptr;
- char *hi = &lo[size * (total_elems - 1)];
- /* Largest size needed for 32-bit int!!! */
- stack_node stack[STACK_SIZE];
- stack_node *top = stack + 1;
- while (STACK_NOT_EMPTY)
- {
- char *left_ptr;
- char *right_ptr;
- char *pivot = pivot_buffer;
- /* Select median value from among LO, MID, and HI. Rearrange
- LO and HI so the three values are sorted. This lowers the
- probability of picking a pathological pivot value and
- skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
- char *mid = lo + size * ((hi - lo) / size >> 1);
- if ((*cmp) ((void *) mid, (void *) lo) < 0)
- SWAP (mid, lo, size);
- if ((*cmp) ((void *) hi, (void *) mid) < 0)
- SWAP (mid, hi, size);
- else
- goto jump_over;
- if ((*cmp) ((void *) mid, (void *) lo) < 0)
- SWAP (mid, lo, size);
- jump_over:;
- memcpy (pivot, mid, size);
- pivot = pivot_buffer;
- left_ptr = lo + size;
- right_ptr = hi - size;
- /* Here's the famous ``collapse the walls'' section of quicksort.
- Gotta like those tight inner loops! They are the main reason
- that this algorithm runs much faster than others. */
- do
- {
- while ((*cmp) ((void *) left_ptr, (void *) pivot) < 0)
- left_ptr += size;
- while ((*cmp) ((void *) pivot, (void *) right_ptr) < 0)
- right_ptr -= size;
- if (left_ptr < right_ptr)
- {
- SWAP (left_ptr, right_ptr, size);
- left_ptr += size;
- right_ptr -= size;
- }
- else if (left_ptr == right_ptr)
- {
- left_ptr += size;
- right_ptr -= size;
- break;
- }
- }
- while (left_ptr <= right_ptr);
- /* Set up pointers for next iteration. First determine whether
- left and right partitions are below the threshold size. If so,
- ignore one or both. Otherwise, push the larger partition's
- bounds on the stack and continue sorting the smaller one. */
- if ((size_t) (right_ptr - lo) <= max_thresh)
- {
- if ((size_t) (hi - left_ptr) <= max_thresh)
- /* Ignore both small partitions. */
- POP (lo, hi);
- else
- /* Ignore small left partition. */
- lo = left_ptr;
- }
- else if ((size_t) (hi - left_ptr) <= max_thresh)
- /* Ignore small right partition. */
- hi = right_ptr;
- else if ((right_ptr - lo) > (hi - left_ptr))
- {
- /* Push larger left partition indices. */
- PUSH (lo, right_ptr);
- lo = left_ptr;
- }
- else
- {
- /* Push larger right partition indices. */
- PUSH (left_ptr, hi);
- hi = right_ptr;
- }
- }
- }
- /* Once the BASE_PTR array is partially sorted by quicksort the rest
- is completely sorted using insertion sort, since this is efficient
- for partitions below MAX_THRESH size. BASE_PTR points to the beginning
- of the array to sort, and END_PTR points at the very last element in
- the array (*not* one beyond it!). */
- #define min(x, y) ((x) < (y) ? (x) : (y))
- {
- char *const end_ptr = &base_ptr[size * (total_elems - 1)];
- char *tmp_ptr = base_ptr;
- char *thresh = min(end_ptr, base_ptr + max_thresh);
- register char *run_ptr;
- /* Find smallest element in first threshold and place it at the
- array's beginning. This is the smallest array element,
- and the operation speeds up insertion sort's inner loop. */
- for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
- if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
- tmp_ptr = run_ptr;
- if (tmp_ptr != base_ptr)
- SWAP (tmp_ptr, base_ptr, size);
- /* Insertion sort, running from left-hand-side up to right-hand-side. */
- run_ptr = base_ptr + size;
- while ((run_ptr += size) <= end_ptr)
- {
- tmp_ptr = run_ptr - size;
- while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
- tmp_ptr -= size;
- tmp_ptr += size;
- if (tmp_ptr != run_ptr)
- {
- char *trav;
- trav = run_ptr + size;
- while (--trav >= run_ptr)
- {
- char c = *trav;
- char *hi, *lo;
- for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
- *hi = *lo;
- *hi = c;
- }
- }
- }
- }
- }