b2PulleyJoint.cpp
上传用户:gb3593
上传日期:2022-01-07
资源大小:3028k
文件大小:11k
- /*
- * Copyright (c) 2007 Erin Catto http://www.gphysics.com
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #include <Box2D/Dynamics/Joints/b2PulleyJoint.h>
- #include <Box2D/Dynamics/b2Body.h>
- #include <Box2D/Dynamics/b2TimeStep.h>
- // Pulley:
- // length1 = norm(p1 - s1)
- // length2 = norm(p2 - s2)
- // C0 = (length1 + ratio * length2)_initial
- // C = C0 - (length1 + ratio * length2) >= 0
- // u1 = (p1 - s1) / norm(p1 - s1)
- // u2 = (p2 - s2) / norm(p2 - s2)
- // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2))
- // J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)]
- // K = J * invM * JT
- // = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2)
- //
- // Limit:
- // C = maxLength - length
- // u = (p - s) / norm(p - s)
- // Cdot = -dot(u, v + cross(w, r))
- // K = invMass + invI * cross(r, u)^2
- // 0 <= impulse
- void b2PulleyJointDef::Initialize(b2Body* b1, b2Body* b2,
- const b2Vec2& ga1, const b2Vec2& ga2,
- const b2Vec2& anchor1, const b2Vec2& anchor2,
- float32 r)
- {
- bodyA = b1;
- bodyB = b2;
- groundAnchorA = ga1;
- groundAnchorB = ga2;
- localAnchorA = bodyA->GetLocalPoint(anchor1);
- localAnchorB = bodyB->GetLocalPoint(anchor2);
- b2Vec2 d1 = anchor1 - ga1;
- lengthA = d1.Length();
- b2Vec2 d2 = anchor2 - ga2;
- lengthB = d2.Length();
- ratio = r;
- b2Assert(ratio > b2_epsilon);
- float32 C = lengthA + ratio * lengthB;
- maxLengthA = C - ratio * b2_minPulleyLength;
- maxLengthB = (C - b2_minPulleyLength) / ratio;
- }
- b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def)
- : b2Joint(def)
- {
- m_groundAnchor1 = def->groundAnchorA;
- m_groundAnchor2 = def->groundAnchorB;
- m_localAnchor1 = def->localAnchorA;
- m_localAnchor2 = def->localAnchorB;
- b2Assert(def->ratio != 0.0f);
- m_ratio = def->ratio;
- m_constant = def->lengthA + m_ratio * def->lengthB;
- m_maxLength1 = b2Min(def->maxLengthA, m_constant - m_ratio * b2_minPulleyLength);
- m_maxLength2 = b2Min(def->maxLengthB, (m_constant - b2_minPulleyLength) / m_ratio);
- m_impulse = 0.0f;
- m_limitImpulse1 = 0.0f;
- m_limitImpulse2 = 0.0f;
- }
- void b2PulleyJoint::InitVelocityConstraints(const b2TimeStep& step)
- {
- b2Body* b1 = m_bodyA;
- b2Body* b2 = m_bodyB;
- b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
- b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
- b2Vec2 p1 = b1->m_sweep.c + r1;
- b2Vec2 p2 = b2->m_sweep.c + r2;
- b2Vec2 s1 = m_groundAnchor1;
- b2Vec2 s2 = m_groundAnchor2;
- // Get the pulley axes.
- m_u1 = p1 - s1;
- m_u2 = p2 - s2;
- float32 length1 = m_u1.Length();
- float32 length2 = m_u2.Length();
- if (length1 > b2_linearSlop)
- {
- m_u1 *= 1.0f / length1;
- }
- else
- {
- m_u1.SetZero();
- }
- if (length2 > b2_linearSlop)
- {
- m_u2 *= 1.0f / length2;
- }
- else
- {
- m_u2.SetZero();
- }
- float32 C = m_constant - length1 - m_ratio * length2;
- if (C > 0.0f)
- {
- m_state = e_inactiveLimit;
- m_impulse = 0.0f;
- }
- else
- {
- m_state = e_atUpperLimit;
- }
- if (length1 < m_maxLength1)
- {
- m_limitState1 = e_inactiveLimit;
- m_limitImpulse1 = 0.0f;
- }
- else
- {
- m_limitState1 = e_atUpperLimit;
- }
- if (length2 < m_maxLength2)
- {
- m_limitState2 = e_inactiveLimit;
- m_limitImpulse2 = 0.0f;
- }
- else
- {
- m_limitState2 = e_atUpperLimit;
- }
- // Compute effective mass.
- float32 cr1u1 = b2Cross(r1, m_u1);
- float32 cr2u2 = b2Cross(r2, m_u2);
- m_limitMass1 = b1->m_invMass + b1->m_invI * cr1u1 * cr1u1;
- m_limitMass2 = b2->m_invMass + b2->m_invI * cr2u2 * cr2u2;
- m_pulleyMass = m_limitMass1 + m_ratio * m_ratio * m_limitMass2;
- b2Assert(m_limitMass1 > b2_epsilon);
- b2Assert(m_limitMass2 > b2_epsilon);
- b2Assert(m_pulleyMass > b2_epsilon);
- m_limitMass1 = 1.0f / m_limitMass1;
- m_limitMass2 = 1.0f / m_limitMass2;
- m_pulleyMass = 1.0f / m_pulleyMass;
- if (step.warmStarting)
- {
- // Scale impulses to support variable time steps.
- m_impulse *= step.dtRatio;
- m_limitImpulse1 *= step.dtRatio;
- m_limitImpulse2 *= step.dtRatio;
- // Warm starting.
- b2Vec2 P1 = -(m_impulse + m_limitImpulse1) * m_u1;
- b2Vec2 P2 = (-m_ratio * m_impulse - m_limitImpulse2) * m_u2;
- b1->m_linearVelocity += b1->m_invMass * P1;
- b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
- b2->m_linearVelocity += b2->m_invMass * P2;
- b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
- }
- else
- {
- m_impulse = 0.0f;
- m_limitImpulse1 = 0.0f;
- m_limitImpulse2 = 0.0f;
- }
- }
- void b2PulleyJoint::SolveVelocityConstraints(const b2TimeStep& step)
- {
- B2_NOT_USED(step);
- b2Body* b1 = m_bodyA;
- b2Body* b2 = m_bodyB;
- b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
- b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
- if (m_state == e_atUpperLimit)
- {
- b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
- b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
- float32 Cdot = -b2Dot(m_u1, v1) - m_ratio * b2Dot(m_u2, v2);
- float32 impulse = m_pulleyMass * (-Cdot);
- float32 oldImpulse = m_impulse;
- m_impulse = b2Max(0.0f, m_impulse + impulse);
- impulse = m_impulse - oldImpulse;
- b2Vec2 P1 = -impulse * m_u1;
- b2Vec2 P2 = -m_ratio * impulse * m_u2;
- b1->m_linearVelocity += b1->m_invMass * P1;
- b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
- b2->m_linearVelocity += b2->m_invMass * P2;
- b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
- }
- if (m_limitState1 == e_atUpperLimit)
- {
- b2Vec2 v1 = b1->m_linearVelocity + b2Cross(b1->m_angularVelocity, r1);
- float32 Cdot = -b2Dot(m_u1, v1);
- float32 impulse = -m_limitMass1 * Cdot;
- float32 oldImpulse = m_limitImpulse1;
- m_limitImpulse1 = b2Max(0.0f, m_limitImpulse1 + impulse);
- impulse = m_limitImpulse1 - oldImpulse;
- b2Vec2 P1 = -impulse * m_u1;
- b1->m_linearVelocity += b1->m_invMass * P1;
- b1->m_angularVelocity += b1->m_invI * b2Cross(r1, P1);
- }
- if (m_limitState2 == e_atUpperLimit)
- {
- b2Vec2 v2 = b2->m_linearVelocity + b2Cross(b2->m_angularVelocity, r2);
- float32 Cdot = -b2Dot(m_u2, v2);
- float32 impulse = -m_limitMass2 * Cdot;
- float32 oldImpulse = m_limitImpulse2;
- m_limitImpulse2 = b2Max(0.0f, m_limitImpulse2 + impulse);
- impulse = m_limitImpulse2 - oldImpulse;
- b2Vec2 P2 = -impulse * m_u2;
- b2->m_linearVelocity += b2->m_invMass * P2;
- b2->m_angularVelocity += b2->m_invI * b2Cross(r2, P2);
- }
- }
- bool b2PulleyJoint::SolvePositionConstraints(float32 baumgarte)
- {
- B2_NOT_USED(baumgarte);
- b2Body* b1 = m_bodyA;
- b2Body* b2 = m_bodyB;
- b2Vec2 s1 = m_groundAnchor1;
- b2Vec2 s2 = m_groundAnchor2;
- float32 linearError = 0.0f;
- if (m_state == e_atUpperLimit)
- {
- b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
- b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
- b2Vec2 p1 = b1->m_sweep.c + r1;
- b2Vec2 p2 = b2->m_sweep.c + r2;
- // Get the pulley axes.
- m_u1 = p1 - s1;
- m_u2 = p2 - s2;
- float32 length1 = m_u1.Length();
- float32 length2 = m_u2.Length();
- if (length1 > b2_linearSlop)
- {
- m_u1 *= 1.0f / length1;
- }
- else
- {
- m_u1.SetZero();
- }
- if (length2 > b2_linearSlop)
- {
- m_u2 *= 1.0f / length2;
- }
- else
- {
- m_u2.SetZero();
- }
- float32 C = m_constant - length1 - m_ratio * length2;
- linearError = b2Max(linearError, -C);
- C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
- float32 impulse = -m_pulleyMass * C;
- b2Vec2 P1 = -impulse * m_u1;
- b2Vec2 P2 = -m_ratio * impulse * m_u2;
- b1->m_sweep.c += b1->m_invMass * P1;
- b1->m_sweep.a += b1->m_invI * b2Cross(r1, P1);
- b2->m_sweep.c += b2->m_invMass * P2;
- b2->m_sweep.a += b2->m_invI * b2Cross(r2, P2);
- b1->SynchronizeTransform();
- b2->SynchronizeTransform();
- }
- if (m_limitState1 == e_atUpperLimit)
- {
- b2Vec2 r1 = b2Mul(b1->GetTransform().R, m_localAnchor1 - b1->GetLocalCenter());
- b2Vec2 p1 = b1->m_sweep.c + r1;
- m_u1 = p1 - s1;
- float32 length1 = m_u1.Length();
- if (length1 > b2_linearSlop)
- {
- m_u1 *= 1.0f / length1;
- }
- else
- {
- m_u1.SetZero();
- }
- float32 C = m_maxLength1 - length1;
- linearError = b2Max(linearError, -C);
- C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
- float32 impulse = -m_limitMass1 * C;
- b2Vec2 P1 = -impulse * m_u1;
- b1->m_sweep.c += b1->m_invMass * P1;
- b1->m_sweep.a += b1->m_invI * b2Cross(r1, P1);
- b1->SynchronizeTransform();
- }
- if (m_limitState2 == e_atUpperLimit)
- {
- b2Vec2 r2 = b2Mul(b2->GetTransform().R, m_localAnchor2 - b2->GetLocalCenter());
- b2Vec2 p2 = b2->m_sweep.c + r2;
- m_u2 = p2 - s2;
- float32 length2 = m_u2.Length();
- if (length2 > b2_linearSlop)
- {
- m_u2 *= 1.0f / length2;
- }
- else
- {
- m_u2.SetZero();
- }
- float32 C = m_maxLength2 - length2;
- linearError = b2Max(linearError, -C);
- C = b2Clamp(C + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
- float32 impulse = -m_limitMass2 * C;
- b2Vec2 P2 = -impulse * m_u2;
- b2->m_sweep.c += b2->m_invMass * P2;
- b2->m_sweep.a += b2->m_invI * b2Cross(r2, P2);
- b2->SynchronizeTransform();
- }
- return linearError < b2_linearSlop;
- }
- b2Vec2 b2PulleyJoint::GetAnchorA() const
- {
- return m_bodyA->GetWorldPoint(m_localAnchor1);
- }
- b2Vec2 b2PulleyJoint::GetAnchorB() const
- {
- return m_bodyB->GetWorldPoint(m_localAnchor2);
- }
- b2Vec2 b2PulleyJoint::GetReactionForce(float32 inv_dt) const
- {
- b2Vec2 P = m_impulse * m_u2;
- return inv_dt * P;
- }
- float32 b2PulleyJoint::GetReactionTorque(float32 inv_dt) const
- {
- B2_NOT_USED(inv_dt);
- return 0.0f;
- }
- b2Vec2 b2PulleyJoint::GetGroundAnchorA() const
- {
- return m_groundAnchor1;
- }
- b2Vec2 b2PulleyJoint::GetGroundAnchorB() const
- {
- return m_groundAnchor2;
- }
- float32 b2PulleyJoint::GetLength1() const
- {
- b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchor1);
- b2Vec2 s = m_groundAnchor1;
- b2Vec2 d = p - s;
- return d.Length();
- }
- float32 b2PulleyJoint::GetLength2() const
- {
- b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchor2);
- b2Vec2 s = m_groundAnchor2;
- b2Vec2 d = p - s;
- return d.Length();
- }
- float32 b2PulleyJoint::GetRatio() const
- {
- return m_ratio;
- }